	Notes	Connectio ns	Name and type of practice and policy	Category	Description+Implementation	Outcomes	Country/Geogra phy	Representative Project	Total Project Cost	Project Cost
91	Connecticut, NH and NY from "representative project"	92	Finfish and Algal Aquaculture System	A	•A seaweed species was cultivated in aquaculture systems. •The effect on N content in the water was monitored.	 Porphyra species were capable of removing 70 - 100% of N in the water medium, but only 35 - 91% of the P. The seawed also has economic benefit for nori consumption by humans. 	USA	Critical Technology Program of the State of Connecticut and the National and State Sea Grant College Programs of Connecticut, New Hampshire, and New York and NOAA's National Marine Aquaculture		N/A
92	Should Canada and China projects be described separately? NO	91	Integrated Multi-Trophic Aquaculture (IMTA)	A	 Combining fed aquaculture species (finfish), with inorganic extractiv aquaculture species (seaweed), and organic extractive species (suspension- and deposit feeders) in close proximity. In Canada, species of Atlantic salmon, kelps, and blue mussel are raised together in the Bay of Fundy. In China, aquaculture on Zhangzidao Island in the northern Yellow Sea, grow shellfish, seaweeds, crustations, and echinoderms. Suspended culture in Sungo Bay, scallop, kelp, abalone, and blue mussel are cultured. 	 e •IMTA techniques have proven themselves in the experimental and pilot sized scales. In Canada, growth rates of kelp and mussels have been 46 - 50% higher. While taste test of Mussels grown under these conditions are no different. Some results have shown a 80% removal of N from a 1500 ton salmon farm. Some highly controlled experiments show seaweeds removing less than 10 g N/day. 	Canada and China	N/A		N/A
93	Should threats addressed be in description or outcomes? DESCRIPTION		Integrated Coastal Management (ICM)	A	 Continuous and dynamic process of planning and managing the coastal area, which employs integrated, holistic, and interactive approaches. ICM addresses a variety of threats challenging the sustainability of the coastal area, such as fishery resources depletion, habitat loss and degradation, sea-level rise, natural hazards, multiple-use conflicts, pollution, and poverty of coastal communities. 	ICM has contributed to the reduction of multiple resource-use conflicts, and risks from pollution and red tide occurrence. Sustained growth in of shipping, fisheries, tourism, and property. The present value of ICM net benefits amounts to \$3.3 billion.	Philippines	GEF/UNDP project; Regional Programme on Building Partnerships in Environmental Management for the Seas of East Asia (PEMSEA)		N/A
114			Ceasing aquaculture operations to improve water quality.	A	 Agriculture, mainly aquaculture, around Kolleru Lake resulted in poc water quality. The government enforced Operation Kolleru to stop all aquaculture in Kolleru Lake. 	the area.	India	N/A		N/A
118			Seaweed flora and prawn farming interactions	A	 Four seaweed species were grown and tested for biomass accumulation and nitrate and ammonium uptake under controlled conditions. Water quality enhancement was observed when combining differen species of seaweed in close proximity to prawn farming. The seaweed has the ability to use nitrate and ammonium to manufacture biomass. 	 A slight increase in ammonium uptake when compared to nitrate uptake by all species. Uptake rates ranged from 42 to 137 micro-mol/g of dw/hour for ammonium. A linear relationship between seaweed biomass production and nitrogen uptake. All seaweed species would be suitable for integration into prawn or fish farming. 	India	N/A		N/A
123			Modeling marine ecosystem structure	A	 The amount of nutrient entering into the system and growth rate of phytoplankton play an important in controlling phytoplankton growth A mathematical model was developed based on four compartments nutrient, phytoplankton, zooplankton, and detritus The model is simulated for two cases: 1) detritus link with the system through remineralization, 2) detritus link with the system through remineralization and palatability of detritus to zooplankton 	h. plankton populations. :	India	N/A		N/A

[3] May life the singert Image: Section concentrating space Image: Section concentration space Image: Sec		March 1941 - 1 - Constant					1104	1.10		A1 (A
Image: Section	125	Very little info on project	Compliance guide for concentrated aquatic A		Assisted concentrated aquatic animal production (CAAP)		USA	N/A		N/A
Image: Section problem with the control of them with the conteon with them with them with them with the control of			animal production							
Image: Section of the state of the stat					farm environmental compatibility.					
Image: Section of Sectio										
Image: Section of the sectin of the section of the										
Image: Section of the sectin of the section of the										
Image: Section of Sectio										
Image: Section of the state of the stat										
Image: Section of Sectio										
Image: Section of water	3/1	<u> </u>	Constructing wetlands to remove N from A	W	Aquaculture produces N	Constructed wetlands can remove 60 - 80% N from aquaculture	N/A	N/A		Ν/Δ
Image: Section	54			**			1975	17.4		170
Image: Second			aquaculture wastewater			wastewater.				
NumberNumbe										
N N										
51. Mode double modes for sequentifies and double modes for sequentifies and be incided in decorption (*FS) if FXSIR sequentifies and be incided in decorption (*FS) if FXSIR sequentifies and the incided in decorption (*FS) if FX										
a spacinitie port is included in description VS POSUME a spacinitie port is included in description VS POSUME a spacinitie port is included in description VS POSUME a spacinitie port is included in the intervent opport is in the intervent opport is in the intervent opport i										
In increstrophic VIST POSSURE Instructions and sector particle partint particle particle parting particle part	51		Implementing Aquaculture systems A				USA	Conservation Practices		
And CONNECCE TO TITIS Image: Support Sup										
PECINC PROLECT Image: Second Seco										
Image: Section										
Image: Section of the sectin of the section of the section of the section of the		SPECIFIC PROJECT			 embankment ponds that intercept and store surface runoff water, or 					
And Control					 off-channel impoundments or excavated ponds that are filled by 					
Name					pumping ground water, or diverting spring or stream flows.					
biological VLRESS WARS TO CAPPUIGE AND TERAT NUTRIENTS, THEN NO with a continuous flow of ware for high- density fish production with a continuous flow of ware for high- density fish production for high-density fish production. for high-den										
useding? VILLES VINLES With a continuous flow of water for high-density fish production. In this standard states in conduct flowing water to produce fish. In this standard states in conduct flowing water to produce fish. In this standard states in continuous flow of water for high-density fish production. In this standard states in continuous flow of water for high-density fish production. In this standard states is well as channels and takes contracted of concrete. toock, timer, noc, fittegiss, or other water is a state in the states is well as channels and takes contracted of site. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was been of this water was statinably managed and deposed of. In this water was statinably managed and deposed of. <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1								
useding? VILLES VINLES With a continuous flow of water for high-density fish production. In this standard states in conduct flowing water to produce fish. In this standard states in conduct flowing water to produce fish. In this standard states in continuous flow of water for high-density fish production. In this standard states in continuous flow of water for high-density fish production. In this standard states is well as channels and takes contracted of concrete. toock, timer, noc, fittegiss, or other water is a state in the states is well as channels and takes contracted of site. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was statinably managed and deposed of. In this water was been of this water was statinably managed and deposed of. In this water was statinably managed and deposed of. <td>263</td> <td>How does this affect nutrient</td> <td>Fish Raceway or Tank: constructing tanks</td> <td>v</td> <td>•A channel or tank with a continuous flow of water was constructed</td> <td></td> <td>USA</td> <td>Conservation Practices</td> <td></td> <td>1</td>	263	How does this affect nutrient	Fish Raceway or Tank: constructing tanks	v	•A channel or tank with a continuous flow of water was constructed		USA	Conservation Practices		1
APPLICIE AND TREAT of ends of the production initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial standing applies to reactive yor tanks that conduct flowing water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initial stanks that conduct flow water to group does find. initi				ľ						
NUTRENTS, THEN NO. Image: Second										
Image: Second			density isin production							
Image: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete concrete block, timber, rock, fibergiuss, orImage: Constructed for concrete, rock, fibergiuss, rock, fibergius		NOTRIENTS, THEN NO								
Image: Constraint of the constraint										
99 Lysing biggs digesters to convert animal wase to energy. N *Two analiscule picto biggs digesters were outstructed to comme, "Autientity will still have to be transported of site, "Size were subtainable energy source was tapped. N Analoi Watenergy.										
Image: series in the series	-0	·	Using bigger diseases to account actional D	N		- A - inveloueste over eventsionalely events and and descended of	Turker	An etalia Matanak ad	\$45 410 000	
Image:	59			N			Тигкеу		\$45,410,000	
Image: series in the series			waste to energy			 A renewable and sustainable energy source was tapped. 				
Image: Note that 75-78 contain near identical project unby serve the solution with the US, how were these locations with the US, how were these locations are not included in contry/geographyImage: Note that 75-78 contain near included in contry/geographyImage: Note that 75-78 contain near incl										
Image: state in the state										
S1 Using manure pads and digesters to realize nutrient reduction. • Manure pads and digesters were used to realize nutrient reduction. • Georgia corregia Agricultural Research, \$8,250,000 Extension, africultural Research, \$8,250,000 74 Algal Turf Scrubber Treatment (ATS) B U • Algae survives and grows on the N and P present in dairy manure resulting in the conversion of manure N and P into algal biomass. N and P from manure are converted into algal biomass. Algal Turf Scrubber Treatment (ATS) B U • Algae survives and grows on the N and P present in dairy manure resulting in the conversion of manure N and P into algal biomass. N and P from manure are converted into algal biomass. Algal Turf Scrubber Algal Turf Scrubber Algal Turf Scrubber Algal Turf Scrubber Technology for a Hypothetical note alga biomass. N and P from manure are converted into algal biomass. N and b from manure are converted into algal biomass. N and b used as an input in compost and animal feed. USA Algal Turf Scrubber Algal Turf Scrubber Technology for a Hypothetical note in algal scrubber. N and P from manure are converted into algal biomass. N and P from manure are converted into algal biomass. N and P from manure are converted into algal biomass. N and P from manure are converted into algal biomass. N and P from manure are converted into algal biomass. N/A 75 Note that 75-78 contain neer identical project info but different locations within the US, however								Danube River and Black Sea		
Image: Series of the series	-1	ł – – – – – – – – – – – – – – – – – – –	Uning many and and dispetant to seeling D	N			Casaria	Coordina Anniaultural Research	\$8.2E0.000	
Image: A set of the set	1			IN			Georgia		\$6,250,000	
A Algal Turf Scrubber Treatment (ATS) B U • Algae survives and grows on the N and P present in dairy manure resulting in the conversion of manure N and P into algal biomass. • Manure effluent is fed into an algae structure is degined into an algae is roubber. • Algae produced as a byproduct could be used in animal feed, compost and animal feed. Nand P from manure are converted into algal biomass, which into algae biomass, which included in control of the value of as an input in compost and animal feed. USA Algal Turf Scrubber Technology for a Hypothetical 1000-cow Dairy Image: Compost and animal feed, compost and animal feed, compost and animal feed, compost, and organic fertilizer. Nand P from manure are converted into algal biomass, which included in control of alga biomass, which included in control of algal biomass are not included in control/geography Nand P from manure are converted into algal biomass, which included in control of the value of a san input in compost and animal feed. NAnd P from manure are converted into algal biomass, which included in control of alga biomass, which included in control of alga biomass, which included in control of the value of a san input in compost and animal feed. NAnd P from manure are converted into algal biomass, which included in control of alga biomass, which included in control/geography NA and P from manure are converted into algal biomass, which is attached on to screens in a shallow trough on the sain. NA and P from manure are converted into algal biomass, which included in control of alga biomass, which included in control of alga biomass are not included in control of alga biomass. NA and P from manure are converted into algal biomass, which is attached on the value of a san input in compost and			nutrient reduction		-					
Image: Second					spreading equipment.			(ARET)		
Image: Series and		1					1	1		
Image: Series and		<u> </u>								
Image: series of the series	4	1	Algal Turf Scrubber Treatment (ATS) B	U			USA			
Image: Sevent of the sevent		1			resulting in the conversion of manure N and P into algal biomass.	can be used as an input in compost and animal feed.		Technology for a Hypothetical		
Image: Sevent of the sevent		1			•Manure effluent is fed into an anaerobic digester to create biogas.			1000-cow Dairy		
Image: Series of the series		1						· ·		
Image: Note that 75-78 contain near identical project info but different locations within the US, however these locations are not included in control/geography WHY NOT? NOTE DIFFERENT Algal Turf Scrubber Treatment (ATS) B U Algal Turf is attached onto screens in a shallow trough or basin. Water is pumped through the screen and nutrients are scrubbed from the water via uptake by algae. N and P from manure are converted into algal biomass, which different locations within the US, however these locations are not included in control/geography wHY NOT? NOTE DIFFERENT Algal Turf Scrubber Treatment (ATS) B U Algal Turf is attached onto screen and nutrients are scrubbed from the water via uptake by algae. N and P from manure are converted into algal biomass, which different locations within the US, however these locations are not included in control/geography wHY NOT? NOTE DIFFERENT Algal Turf Scrubber Treatment (ATS) B U Algal Turf is attached onto screen and nutrients are scrubbed from the water via uptake by algae. N and P from manure are converted into algal biomass, which is an input in compost and animal feed. USA Pilot-scale ATS tertiary wastewater treatment system; Patterson ATS system N/A		1								
Note that 75-78 contain near identical project info but different locations within the US, however these locations are not included in control/geography WHY NOT? NOTE DIFFERENTAlgal Turf Scrubber Treatment (ATS)BUAlgal Turf Scrubber Treatment (ATS)N and P from manure are converted into algal biomass, which the water via uptake by algae. •Sewage water is pumped over algae for treatment. •Sewage water is pumped over algae for treatment. •Algal biomass has the potential for use in biofuels.N and P from manure are converted into algal biomass, which can be used as an input in compost and animal feed.USA watewater treatment system; Patterson ATS systemN/A		1								
identical project info but different locations within the US, however these locations are not included in courtiny/geography WHY NOT? NOTE DIFFERENT		1			······································					
identical project info but different locations within the US, however these locations are not included in courtiny/geography WHY NOT? NOTE DIFFERENT	5	Note that 75-78 contain near	Algal Turf Scrubber Treatment (ATS) B	u	 Algal turf is attached onto screens in a shallow trough or basin 	N and P from manure are converted into algal biomass, which	USA	Pilot-scale ATS tertiary		N/A
different locations within the US, however these locations are not included in country/geography WHY NOT? NOTE DIFFERENT			Jan and a second content (110)	ľ						
however these locations are not •Sewage water is pumped over algae for treatment. included in coutnry/geography •Algal biomass has the potential for use in biofuels. WHY NOT? NOTE DIFFERENT						can be used as an input in compose and animar reed.				
included in coutnry/geography WHY NOT? NOTE DIFFERENT •Algal biomass has the potential for use in biofuels.								accerson Ars system		
WHY NOT? NOTE DIFFERENT										
					-Aigai biomass has the potential for use in biolueis.					
		GEOGRAPHIES							1	
		GEOGRAPHIES								
		GEUGRAPHIES								
		GEOGRAPHIES								
		GEOGRAPHIES								
		GEOGRAPHIES								
		GEOGRAPHIES								

76		Algal Turf Scrubber Treatment (ATS)	В	U	 Algal turf is attached onto screens in a shallow trough or basin. Water is pumped through the screen and nutrients are scrubbed fron the water via uptake by algae. Algae screen was placed in a drainage canal of a sugar farm to scrub flowing canal water. This reduced non-point pollution in the Florida Everglades. 		USA	Pilot-scale ATS non-point- source nutrient removal	N/A
77		Algal Turf Scrubber Treatment (ATS)	В	U	 Algal turf is attached onto screens in a shallow trough or basin. Water is pumped through the screen and nutrients are scrubbed fron the water via uptake by algae. Algal turf scrubber (ATS) systems were used to scrub non-point pollution of stormwater north of Lake Okeechobee. 	N and P from manure are converted into algal biomass, which can be used as an input in compost and animal feed.	USA	Pilot-scale ATS non-point- source nutrient removal; S-154 unit	N/A
78		Algal Turf Scrubber Treatment (ATS)	В	U	 Algal turf is attached onto screens in a shallow trough or basin. Water is pumped through the screen and nutrients are scrubbed from the water via uptake by algae. An ATS system cleans the Suwanee River in Florida. The module cleans 11 billion liters per day. 	N and P from manure are converted into algal biomass, which n can be used as an input in compost and animal feed.	USA	ATS for the Suwanee River in Florida	N/A
81	Is MAPS the same as ATS? PERHAPS. I WOULD MAKE A CALL.	Growing algae for water treatment purposes (Managed Aquatic Plant Systems (MAPS))	В		 Algal turf is attached onto screens in a shallow trough or basin. Water is pumped through the screen and nutrients are scrubbed fron the water via uptake by algae. This technology is used in Managed Aquatic Plant Systems (MAPS) Managed Aquatic Plant Systems were located in areas of the Lake Okeechobee Watershed with high P concentrations. 	n	USA	Long-Term Plan for Achieving Water Quality Goals	\$24,200,000
82		Constructing floating mats of vegetation to reduce nutrient concentration of manure before land application.	В		 Floating mats of vegetation were constructed to float on a lagoon of swine manure and grow three different wetland plant species; cattail soft rush, and maidencane. 		USA	Floating Mat Study	N/A
97	This is an evaluation of behavior, not a best practice. IT IS A PTRACTICE BUT THE HOW AND WHY SHOULD BE SUMMARIZED IN THE TITLE AND DESCRIPTION	Adopting technologies and changing trends	В		 New technologies were not widely adopted Reasons: •farmers were not consulted before a technology is introduced •Technology delivery was late •Extension services were irregular or absent, •Extension agents were erratic is delivery of advisory service. •For a new technology to be accepted and adopted, high financial return is the major driving force. 	•Farmers moved away from cattle grazing and toward crop production.	Uganda	Transboundary Agro- ecosystem Management Programme for the Lower Kagera River Basin	
120		Managing acidic soils	В	ſ			India	Niche Area of Excellence on Acid Soil Management	\$200,000
121		Managing acidic soils	B		The impact of bio-fertilizers and bio-inoculants on crop yields and nutrient use efficiencies was evaluated.	 Soil conditions improved Root growth, root density, and volume increased, as well as root CEC with the application of bio-fertilizers and bio-inoculant 	India 5	N/A	\$40,000
198		Poultry House Biofilters	В	M	 Poultry House Biofilters are comprised of poultry housing ventilation systems that pass air through a biofilter media that incorporates a layer of organic material, typically a mixture of compost and wood chips or shreds. 	 The filter supports a microbial population and reduces ammonia emissions by oxidizing volatile organic compounds inte carbon dioxide, water and inorganic salts. 	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed	

· · · · · · · · · · · · · · · · · · ·				1			
220	Using dietary phytase to reduce the amount B of supplemental phosphorus used in feed rations, decreasing total P excreted by livestock	M	 Dietary phytase describes a suite of enzymes that cleave inorganic phosphorus (P) from organic forms of P in grains (inositol phosphates, also referred to as phytate) to increase grain P availability to animals. Producers can use dietary phytase to reduce the amount of supplemental P used in feed rations, thereby decreasing the total amount of P fed to animals. 	 By decreasing the total amount of P fed, producers also can decrease total P excreted by their livestock, and thus reduce the total amount of P that can potentially be lost to streams and rivers. 	USA	Dietary Phytase to Reduce Phosphorus Losses from Animal Manure	
222	Nutrient Inactivation: using chemical B precipitants to bind phosphorus into an insoluble form unavailable to algae.	0	 Chemical precipitants are used to bind soluble reactive phosphorus (SRP) into an insoluble form that is unavailable to algae and clarify the water column. Aluminum sulfate (alum) is dispensed in carefully controlled amount to the affected water body. The aluminum reacts with the SRP to form aluminum phosphate that is insoluble at pH values between 3 and 9. Aluminum undergoes hydrolysis to form aluminum hydroxide floc that clarifies the water column and adsorbs additional phosphorus (P) The aluminum hydroxide precipitate, and floc settle to the bottom of the lake or pond, forming a thin film over the sediment. This thin film decreases P release and recycling from bottom sediments. 	A thin film of aluminum hydroxide percipitate and floc	USA	Lake and Pond Treatment by Nutrient Inactiviation	
246 Make link a hyperlink	Agrichemical Handling Facility B		•A facility with an impervious surface was constructed to provide an environmentally safe area for the handling of on-farm agrichemicals	 The facility provided a safe environment on farm and ranch operations for the storage, mixing, loading and cleanup of agrichemicals, retain incidental spillage, retain leakage, and to reduce pollution to surface water, groundwater, air, and/or soil. 	USA	USDA Natural Resource Conservation Service Conservation Practices Index	
250 What does PAM do to irrigated lands susceptible to erosion? PLEASE GET ME A CONTACT AND I WILL MAKE A CALL TO HAVE A BETTER DESCRIPTION Make link a hyperlink	Applying Anionic polyacrylamide (PAM) B		 Water-soluble Anionic Polyacrylamide (PAM) was applied to irrigated lands susceptible to irrigation-induced erosion where the sodium adsorption ratio (SAR) of irrigation water is less than 15. 		USA	USDA Natural Resource Conservation Service Conservation Practices Index	
281 Make link a hyperlink	Vegetative Treatment Area B		 An area of permanent vegetation is used for agricultural wastewater treatment to improve water quality by reducing loading of nutrients, organics, pathogens, and other contaminants associated with livestock, poultry, and other agricultural operations. The total treatment area for the Vegetative Treatment Area is based on the soil's capacity to infiltrate and retain runoff within the root zone and the vegetation's agronomic nutrient requirements. The soil's water holding capacity in the root zone, infiltration rate, permeability, and hydraulic conductivity are used to determine its ability to absorb and retain runoff. Runoff determination is based on the most restrictive soil layer within the root zone regardless of its thickness. 	Loading of nutrients, organics, pathogens, and other contaminants associated with livestock, poultry, and other agricultural operations is reduced.	USA	USDA Natural Resource Conservation Service Conservation Practices Index	
282	Using perennial grass based pastures to B reduce acidification on pastoral soil		 Perennial grass based pastures reduce acification on pastoral soils. Alkali addition to counteract net acidification may be necessary on acid soils to maintain management options for growing aluminiumsensitive species. Nitrate leaching was measured over a 3-year period from pasture receiving 200 kg fertilizer-N/ha and from similarly grazed pasture that received no N fertilizer. The results are discussed together with those from the same plots in the preceding 3 years. 	•Results indicated that N derived from excreta was the main	USA	A 6-year comparison of nitrate leaching from grass/clover and N-fertilized grass pastures grazed by sheep.	

295		Optimizing N fertilizer management under multiple time demands B		For farmers growing high yielding irrigated crops, using controlled- release N products in combination with untreated N fertilizer (to allow for immediate N supply) ensures a continuous release of nitrogen over the growing season.		China (Sichuan, Chongqing, Hubei, Jiangxi)			
30		Promoting buffer vegetation stripes C between water bodies (streams and ditches) and agricultural areas				Estonia, Russia	Development and Implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4,770,000	
95		Planting Commercial Trees on Hillsides C	н	Landowners of a hillside planted trees to sustain hillside integrity Community members were employed to maintain the trees Biproducts of pruning and trimming provided firewood.	Hillside soil runoff was decreased Rainfall infiltration increased Wind erosion was reduced	Uganda	Transboundary Agro- ecosystem Management Programme for the Lower Kagera River Basin		
100		Scaling-up of agroforestry innovation C adoption		 Planting trees or hedges on hillside land. hedges were used to protect 120,000 ha of hillside land. •34 farmers contributed to project activity. 	•28 tons of potassium conserved	Uganda	N/A		N/A
158		Planting buffer strips to prevent soil erosion C	н		 Buffer zones can reduce pollution by changing land use (i.e. they stop agricultural activity), thereby reducing direct pollution from inorganic fertilizers and organic manure additions. A quantitative assessment of this reduction measure is not possible. The efficiency of buffer zones in removing suspended solids and nutrients is affected by the width of the zone, gradient of the drained field, soil type and particularly by the variety and density of zone vegetation. Buffer stripe effectiveness depends on the establishment of buffer stripes along watercourses and the corresponding distance requirement and use restrictions. 	N/A	N/A		1.900-2.600 DKK/ha
	Could any of this info be moved to outcomes? BULLETS 3 AND 4	Introducing riparian strips and green C corridors		Establishing vegetated and unfertilized buffer zones alongside watercourses decrease erosion and the movement of nutrients into watercourses Buffer zones also intercept overland flow from agricultural area just before it reaches the watercourse. Niparian strips and green corridors help to filter nutrients and sediments before they enter water bodies. By aiding in the uptake of excessive nutrients from agriculture runoff eutrophication is avoided. Green corridors and riparian strips can re-instate and/or increase biodiversity in an area. It is important to consider the type and diversity of vegetation used for the buffer zones.		N/A	N/A		N/A
174		Planting permanent Grassland on erosive C areas				N/A	N/A		N/A
184	Same as 158 IS IT A DIFFERENT PROJECT OR GEOGRAPHY? IT HAS TO BE CONNECTED TO A PROJECT -PLEASE LOOK BACK AT THE ORIGINAL SPREAD SHEET	Establishing riparian buffer strips C		Establishing vegetated and unfertilized buffer zones alongside watercourses decreases the movement of nutrients into watercourses. Buffer zones can reduce pollution by changing land use (i.e. they stop agricultural activity), thereby reducing direct pollution from inorganic fertilizers and organic manure additions. Buffer stripes also act as a shield against overland flow from agricultural area and prevent run-off to reach the watercourse. Buffer stripe effectiveness depends on the establishment of buffer		N/A	N/A		Buffer zones require a certain amount of investments to establishment.
189		Managing Vegetation on river banks C		 Intensive use associated with grazing and other agricultural activities can impact the quantity and structure of substrate and the structure and condition of riparian zones. 	 This measure can help to reduce bank/bed erosion, sediment delivery, and loss of habitat. 	N/A	N/A		N/A

205	How are forage harvest practices managed? RESEARCH PROJECT DOCUMENTS	Managing Forage Harvest practices	C C S	v	p a V • ti	Managing Forage Harvest practices reduce sediment and nutrient bollution to water bodies originating from forest management activities to acceptable levels. Open channels convey stormwater runoff and provide treatment as he water is conveyed, includes bioswales. Runoff passes through either vegetation in the channel, subsoil	 Stormwater is treated by natural systems including soil filtration and plant nutrient absorption. 	USA USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed Developing Best Management practice definitions and effectiveness estimates for	
						matrix, and/or is infiltrated into the underlying soils.			nitrogen, phosphorus and sediment in the Chesapeake watershed	
228	**NOTE: Very few buffers or vegetation examples decribe the impact on nutrient movement.** COVER CROPS ARE ALTERNATED SO THEY TAKE UP EXCESS NUTRIENTS What is the nutrient benefit of strip cropping?	Strip Cropping	c		fi • a • is c	Crops were grown in a systematic arrangement of strips across a ield. Types of strip cropping include contour, field or buffer. Strip cropping is effective due to the precise arrangement of the alternating strips in the field. The crops are arranged so that a strip of grass or close-growing crop s alternated with a clean-tilled strip or a strip with less protective cover.		USA	Strip Cropping	
234	What are the water quality affects these areas are at risk of? HIGHER NUTRIENT LOADING FROM ANIMAL AG. FURTHER RESEARCH FOR OUTCOMES	Cultivating alternative crops	C J		e • a • rr tt rr • • a • • tt	High nutrient crops were replaced in high-risk areas for water quality High swith sound alternatives. High-risk areas exist in places where there is intense animal agriculture because of the resulting imbalance in nutrients. High nutrient loading crops, such as corn and soybean, should be replaced with alternatives in environmentally sensitive areas such as hose in close proximity to local waters or in areas where there is a recorded nutrient imbalance for N or P. High-risk areas include such agricultural lands as sandy soils, which allow for easy N transport. When shifting high-nutrient loading crops out of the sensitive areas, he viability and market for the replacement crops will play an mportant role in deciding on which crops to grow.		USA	Guidance for Federal Land Management in the Chesapeake Bay Watershed	
241		Planting trees	СН					Bulgaria, Romania, Maldova	Best Agricultural Practice on my Farm	\$36,376
247	What is the benefit of alley cropping? LOOK FOR CONTACT INFO ON THE nrcs WEBSITE	Alley Cropping	c		a, b	•Trees or shrubs are planted in sets of single or multiple rows with gronomic, horticultural crops or forages produced in the alleys between the sets of woody plants that produce additional products. This can be implemented on all cropland and hayland where trees, hhrubs, crops and/or forages can be grown in combination.		USA	Conservation Practices	
253	How does this affect nutrients? BRUSH AROUND WATER WAYS CAN FILTER NUTRIENTS AND REDUCE EROSION	Managing brush	с		ir • re	woody (non-herbaceous or succulent) plants, including those that are nvasive and noxious, are managed or removed. Brush is managed on all lands except active cropland where the removal, reduction, or manipulation of woody (non-herbaceous or ucculent) plants is desired.		USA	Conservation Practices	

255		electronic territ		La construction de la constructi		Concerning the second	r	
255	Does this necessarily affect nutrients in the waterways? NOT SURE. PLEASE LOOK FOR MORE INFO, LIKELY ON THE NRCS WEBSITE	Clearing and Snagging C		 vegetation along the bank is removed (clearing) and/or snags, drifts, or other obstructions are selectively removed (snagging) from natural or improved channels and streams. Risks to agricultural resources or civil infrastructure are reduced by removing obstructions that hinder channel flow or sediment transport. 	USA	Conservation Practices		
262		Establishing a field border C		 A strip of permanent vegetation established at the edge or around the perimeter of a field. This practice can support or connect other buffer practices within and between fields. This practice may also apply to recreation land or other land uses where agronomic crops including forages are grown. 	USA	Conservation Practices		
264	Effect on nutrients in soil or water? It holds moisture and could also uptake nutrients. Please call or explore with NRCS/	Cutting and removing forages from the C field.		The timely cutting and removal of forages from the field such as hay, green-chop or ensilage. Forage is harvested at a frequency and height that optimizes the desired forage stand, plant community, and stand life. Forage is harvested at the stage of maturity that provides the desired quality and quantity without compromising plant vigor and stand longevity. Silage/haylage crops are harvested within the optimum moisture range for the type of storage method(s) or structure(s) being utilized.	USA	Conservation Practices		
265	What are the management objectives? The farmers management objectives.	Treating woody plant residues to achieve C land owner objectives while protecting land and water resources (Forest Slash Treatment)		•Woody plant residues created during forestry, agroforestry and horticultural activities are treated to achieve management objectives. •Slash treatment methods (i.e. burning, chipping, lop and scatter, removal, crushing) will achieve landowner objectives while adequately protecting land and water resources.	USA	Conservation Practices		
268	What are the natural resource conservation purposes? NUTRIENT MANAGEMENT COULD BE ONE.	Planting Hedgerows C		Dense vegetation is established in a linear design to achieve a natural resource conservation purpose. Hedgerows are established using woody plants or perennial bunch grasses producing erect stems attaining average heights of at least 3 feet persisting over winter. Plants selected must be suited and adapted to soil and site conditions, climate, and conservation purpose.	USA	Conservation Practices		
276	Does anything in the description describe how range planting affects nutrient loss from soil? NO EXCEPT GRASSES AND OTHER COVER HELP WITH NUTRIENT UPTAKE. THEY COULD FORM A BARRIER FOR	Range planting C	L	 Adapted perennial or self-sustaining vegetation such as grasses, forbs, legumes, shrubs and trees are established on rangeland. This practice is applied where desirable vegetation is below the acceptable level for natural reseeding to occur, or where the potential for enhancement of the vegetation by grazing management is unsatisfactory 	USA	Conservation Practices		
285	study without clear best practice REDUCING FERTILIZER APPLICATIONS IS THE POSITIVE. PLEASE MAKE THE CONNECTION BY LOOKING FURTHER AT THE DOCUMENT. Why does more acidic soil result from docroacid fortilizing and	Managing Grasslands C		 The effect on soil fungal:bacterial biomass ratios of withholding fertiliser, lime, and sheep-grazing from reseeded upland grassland are grassland resulted in a reduction in soil pH from 5.4 to 5.1. The cessation of fertiliser applications and liming on grazed grassland resulted in a fall in pH from 5.4 to 4.7, whereas withholding fertiliser and the removal of grazing resulted in a further reduction to pH 4.5. 	USA	Changes in soil fungal:bacterial biomass ratios following reductions in the intensity of management of an upland grassland.		
304		Buffer strips for soil erosion C		Establishing vegetated and unfertilized buffer zones alongside watercourses. Buffer zones can reduce pollution by changing land use (i.e. they stop agricultural activity), thereby reducing direct pollution from inorganic fertilizers and organic manure additions. They also act as a shield against overland flow from agricultural area and prevent run-off to reach the watercourse.	n			

305		Catch crops	с		Catch crops help to reduce the mobilisation of agricultural pollutants by increasing nutrient uptake and reducing surface run-off and soil erosion. Catch crops are fast-growing crops that are grown simultaneously with or between successive plantings of a main crop. Catch crops can also improve the soil structure and increase the amount of organic matter in the soil.	Despite the effective reducing of nitrate leaching risk, some catch crops (e.g. mustard) can lead to a decrease in nitrogen uptake by following cereals (Möller, et al, 2007).	Europe		
		Introducing riparian strips and green corridors	с		Riparian strips and green corridors help to filter nutrients and sediments before they enter water bodies. By aiding in the uptake of excessive nutrients from agriculture runoff eutrophication is avoided.		Europe		
321		Plant cover in winter	C		A winter cover crop is planted in late summer or fall to provide soil cover during the winter. For effectiveness against N leaching, the crop needs to take up N before the onset of winter drainage but thereafter the date of destruction is less critical. For effectiveness against P transfer, the crop does not have to be alive (i.e. straw or even a rough seedbed are equally effective) but the soil must be protected throughout the period when runoff would occur.	excess winter rainfall, as well as phosphorus leaching, which occurs through sediment transport in surface run-off. It also			
328		rione cover in winter			מוויטעווט טנגעו	erusion into wdters.	Lui Ope		
330		Restrictions of agricultural activities on slopes	C I	н	Example: Exclusion of growing of wide-row crops such as maize, potatoes, beet, broad beans, soya-beans, and sunflowers on field blocks, eventually on parts of field blocks whose average slope exceeds 12 degrees	By restricting agriculture activities on slopes, soil erosion and excess water run-off can be avoided as well as sedimentation and pollution from water run-off reduced. Buffer zones can reduce pollution by changing land use (i.e. they	Europe		
335		Riparian buffer strips	с		Establishing vegetated and unfertilized buffer zones alongside watercourses decreases the movement of nutrients into watercourses	stop agricultural activity), thereby reducing direct pollution from inorganic fertilizers and organic manure additions. They also act as a shield against overland flow from agricultural area and			
		Vegetation management on river banks	ſ		Maintaining plants alongside rivers, especially in over-grazed areas	Risk of sedimentation and the amount of nutrient run-off entering the water was reduced. Additionally, vegetation along river banks maintains biodiversity as well as reduces risks of soil errosion.	Furope		
105	Lots of goals but not specific best practices. THIS IS NOT A PRACTICE BUT A PROJECT. THE PRACTICE TITLE SHOULD BE CHANGED TO FOCUS ON THE MANGROVE RESTORATION AND FURTHER RESEARCH DESCRIPTION AND OUTCOMES IN THE PROJECT DOCUMENT Were these goals actually reached?	South China Sea project proposal	D	w	Project aimed to: •Improve regional co-ordination of the management of the South China Sea marine and coastal environment •Improve integration of fisheries and biodiversity management in the Gulf of Thailand. Habitats of concern were identified as •mangroves, coral reefs, seagrass beds, and estuaries/wetlands. Environmental concerns include: •habitat loss and degradation, over exploitation, pollution, and freshwater concerns	Targets for all of the habitats: •Maintain 90% of the present mangrove area, maintain the area of coral reef with more than 50% live cover •Maintain at least 80% of the present area of seagrass in good	Cambodia, China, Indonesia Malaysia, Philippines, Thailand, & Vietnam	Cambodia, China, Indonesia, , Malaysia, Philippines, Thailand, & Viet Nam: Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand; GF/2730-01-4340	\$34,054,830
127		Managing coastal Pollution	D		 Conditions fostering deterioration of the environment in Coastal areas of the Gulf of Thailand were identified. Management tools for tackling coastal environmental problems were initiated. Thailand is in the process of delegating responsibility for environmental management from the major land-based pollutants. 	Total P and N into the Tha Chin River Basin has been traced back to cultivation, 90 and 88% respectively. e	Thailand	N/A	N/A

54 How was degraded land restored? THE COMPOST RESTORED THE NUTRIENT BALANCE. THERE COULD BE MORE INFORMATION IN THE PROJECT REPORT DOCUMENT.	Sustainably managing degraded lands E through re-cultivation with organic waste compost	Terrain was investigated Compost site was planned and constructed Waste was separated to supply heaps High-quality compost was obtained Environmentally friendly use and maintenance of the site was ensured Degraded land was restored Awareness was built Information was provided to the public and best practes were disseminated.	Bulgaria	Capacity Building for N/A Sustainable Land Management (SLM) in Bulgaria
56	Constructing small manure platforms and E N developing institutional and management systems for collection/delivery to central composting facilities	 Small manure platforms were constructe and institutional and management systems for collection/delivery to central composting facilities was developed. 126 farm type manure storage (for more than 10 cattle) and 77 household type manure storage (for up to 5 cattle) were constructed Six large central manure storage and handling facilities were completed, Machinery (container carriers, solid manure spreaders, manure mixers, liquid manure vacuum tankers and loader tractors) were procured and are in use. 	Turkey	Anatolia Watershed \$45,410,000 Rehabilitation Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea
58 What is the effectiveness of injecting the compost? IT GOES DIRECTLY TO THE PLANT WHERE THE NUTRIENTS ARE NEEDED.	Manure compost injection E N	 A locally manufactured system was designed to handle poultry waste A global positioning system was modeled to pilot the effectiveness of injecting the compost and its impact on yield and nutrient reduction. 	Turkey	Anatolia Watershed \$45,410,000 Rehabilitation Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea
211	Composting animal mortality followed by E land application of compost	•Routine animal mortality is composted in a designed, on-farm facility, with subsequent land application of the compost.	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed
216	Anaerobic Digestion E	 Manure treatment still requires some degree of reward for the farmer himself. Anaerobic digestion, especially with electricity production from the biogas produced, is a popular method of manure treatment. Only really suitable for the larger farms. 	Thailand, Vietnam, Ch	Consultants report on manure management systems required for specific livestock farms visited in Thailand, Vietman and Guangdong province, China
217	Composting E	Manure Composting: • Manures are collected and mixed with a carbon source. • The mixture is stacked or placed in windrows and allowed to compost for approximately 12 weeks 1:2 (v/v, manure: carbon source), unless the manure already contains at least one-third bedding, in which case no additional carbon source is needed. . During this time, the stack should be mixed or turned at least four	•Nutrient mineralization or fertilizer value is lower than manure, resulting in fewer nutrients in runoff when compost is applied to soil, as compared to manure applications.	Composing Effects on Phosphorus Availability in Animal Manures

26		Deterior of the second	-				C11			
36		Rotating crops	F				Siberia	DRP Small Grants 1.2/1.3	N/A	
								(Agriculture)		
107	This project says it reduces	Minimizing Soil Disturbance	r.	c	Project aimed to	Expected Outcomes:	Philippines and	LTRA-12: Conservation		N/A
107		Winning Son Disturbance	F	3						N/A
	erosion but doesn't mention				Promote conservation agriculture as a technologically-feasible,	Decreased labor burdens for women, men, and children;	Cambodia	agriculture for food security in		
	associated nutrient loading. IF				economically-viable, environomically-sustainable, and gender-	 Improved soil quality; 		Cambodia and the Philippines		
	THE SOIL AND NUTRIENTS ARE				responsive production system that will contribute to food security of	 Reduced production inputs (e.g. machinery wear and tear and 				
	KEPT IN PLACE REDUCED				small farm communities in the Philippines.	fuel costs for tillage);				
	EROSION, THERE IS LESS					 Increased agricultural profitability; 				
	NUTRIENT LOSS.					•Enhanced resilience to climate change (since CAPS can reduce				
						runoff);				
						 Increased residual moisture, minimizing drought during 				
1						extreme weather events; and				
1						Reduced soil erosion to natural levels.				
1										
			-							
109	Same as 107. FURTHER	Rotating crops	F				Philippines and	LTRA-12: Conservation		N/A
	RESEARCH THE PROJECT						Cambodia	agriculture for food security in		
	REPORT.							Cambodia and the Philippines		
175		Reducing fertilization	F		 A winter cover crop is planted in late summer or fall to provide soil 	 Plant cover in winter can reduce nitrate leaching resulting from 	N/A	N/A		
1/5			l.		 A winter cover crop is planted in late summer or fail to provide soll cover during the winter. A cover crop will take up residual nitrate and 	5 D	17/14	17.5		
					other nutrients from the soil after the main crop has been harvested	occurs through sediment transport in surface run-off. According				
					in the summer or early autumn, leaving less nitrate available for	to a Finnish study plant cover in winter can reduce erosion 10-40				
					leaching over winter.	% and nitrate leaching 10-70 %.				
					 Ensuring that the land is not left exposed helps reduce soil erosion 					
					and the mobilization of associated pollutants.					
					 For effectiveness against N leaching, the crop needs to take up N 					
					before the onset of winter drainage but thereafter the date of					
					destruction is less critical.					
					 For effectiveness against P transfer, the crop does not have to be 					
					alive (i.e. straw or even a rough seedbed are equally effective) but the					
	1				soil must be protected throughout the period when runoff would					
					occur.					
					Plant cover in winter protects the topsoil of the fields against the					
192	shorten bullet points? NOT	Reducing Nutrient Losses Compared to Bare	F	н	•Bare soil is a primary factor in soil erosion and the loss of unused		Ukraine	Best Practices for Water		1
	NECESSARRY	Soil			crop nutrients, both of which impact water quality.			Quality Protection and		
	Should a distinction be made				 Four of the BEPs (buffers, cover crops, conservation tillage, and 			Replication		
	between description of actual				grazing management) when used incombination can greatly reduce			Repliedton		
	project activities and general				soil and nutrient loss compared to bare soil.					
1	info about the best practice?				•Buffers, either grass or forest, are used to maintain the integrity of					
	YES PLEASE				stream channels and shorelines and to reduce losses from upland					
					sources of pollution by trapping or filtering sediments, nutrients, and					
					other chemicals.					
					 Buffers should not be fertilised or have manure added but may be 					
					flash grazed or have a once yearly hay harvest.					
					• • • • •					
					•UNDP/GEF Danube Regional Project – Strengthening the					
					 UNDP/GEF Danube Regional Project – Strengthening the Implementation Capacities for Nutrient Reduction and Transboundary 					
					Implementation Capacities for Nutrient Reduction and Transboundary					
					Implementation Capacities for Nutrient Reduction and Transboundary Cooperation – grasslands were restored to buffer streams from					
					Implementation Capacities for Nutrient Reduction and Transboundary Cooperation – grasslands were restored to buffer streams from cropland. Stream fencing was also used to exclude grazing animals					
					Implementation Capacities for Nutrient Reduction and Transboundary Cooperation – grasslands were restored to buffer streams from cropland. Stream fencing was also used to exclude grazing animals from a number of spring-wetlands.					
					Implementation Capacities for Nutrient Reduction and Transboundary Cooperation – grasslands were restored to buffer streams from cropland. Stream fencing was also used to exclude grazing animals					

193	Divide into 2 practices? YES PLEASE Separate info about best practices from description of Croatia project?	Conservation Tillage and Cover Crops	F S	 Conservation tillage requires maintaining at least 30 percent soil coverage with crop residue with minimal tillage. Cereal cover crops reduce erosion and the leaching of nitrogen into groundwater by maintaining a vegetative cover on cropland and holding nutrients within the root zone over winter. This practice involves planting cereal crops after summer crop harvest. Nutrients are not applied to cover crops. Legumes may also be used as cover crops to provide ground cover and "fix" nitrogen for the following crop. The Croatia Agricultural Pollution Control project: demonstrate reduced nutrient loss, protection from soil erosion and compaction, and maintenance of soil organic matter. For row crops, conservation tillage and the use of fall planted cover crops can be implemented in existing farming operations. 	•Creating a culture of growing early planted fall cereal grain cover crops to "trap" residual nitrogen from the summer crop could provide substantial soil and water quality benefits with minimal adjustments to the next summer's production system.	Croatia	Best Practices for Water Quality Protection and Replication		
289	study: results should be more clearly stated. Haying and rotational grazing resulted in reductions in nitrogen concentration in waterways. THIS IS FINE	Haying to reduce nitrate leaching	F O	 Two management practices were studied with regard to reducing NO3-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO3-N concentrations exceeded maximum contaminant levels. Rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. 		USA	Reduction of nitrate leaching with haying or grazing and omission of nitrogen fertilizer.		
293		Influence of intercropping system on nutrient efficiency and crop yields	F	Intercropping of cereals with tropical forages during the dry winter seasons was encouraged to increase yield and improve nutrient efficiency. Corn was intercropped with Panicum grass and Brachiaria grass, experimenting with different seeding times and crop rotation with soybean and cotton.	Results revealed the ideal time to sow each of the grasses in relation to the time of sowing corn. Farms where this intercropping was practiced observed up to a 20% increase in nutrient use efficiency and 100% increase in profit due to intercropping.	Brazil			
4	This is very general: does anything in the financing plan address nutrient management? THIS IS A POLICY TO PROMOTE BETTER PRACTICES	Developing innovative financing mechanisms to make agro-environmental investments more attractive and pool resources for their realization	G	 Mechanisms for business development and financing were developed and tested, making agro-environmental investments more attractive and pooling resources for their realisation. Interest was raised among commercial banks for financing agro- environmental investments in small enterprises. 		Estonia, Latvia, Lithuania, Poland, and the Russian Federation	The Baltic Sea Regional Project, Tranche 1	\$12,450,000	
15	Improving production efficiency does not necessarily result in nutrient management. Is this the case here? NO, BUT MORE INFORMATION SHOULD BE INCLUDED TYING THIS TO THE OTHER PRACTICES OR THIS PROJECT COULD BE REPFERENCED FOR THE OTHER PRACTICES IT MENTIONS.	Improving production efficiency through cost-effective inputs and better farm management, including selected seed usage	6	Production efficiency was improved through •crop rotation •strip cropping •buffer strip and vinyard cover cropping •Vegetative buffer •Contour plowing •Selected seed usage		Moldova	Agricultural Pollution Control Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$10,740,000	
32		Leveraging investments	G			Hungary	Reduction of Nutrient Discharges- under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$32,350,000	

50 112 181		Implementing high-priority, low-cost water capital investment programs to reduce nitrogen and phosphorus discharges from municipal sources Identify market opportunities	G	High-priority, low-cost capital investment programs were implemented to reduce nitrogen and phosphorus discharges from municipal sources.	a tariantian diantah utik ushanantia (1 - kurananta (60 - sukara		Water Quality Protection Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danuhe River and Black Sea LTRA-11: CAPS among tribal societies in India and Nepal N/A	\$20,270,000	N/A
	Is there a way to connect reducing irrigation consumption with nutrient loading? NO. THIS IS A POLICY	Replacing volumetric pricing with per hectare water charges	G		 Irrigation districts with volumetric (i.e. two-apart tariff) systems in the Guadalquivir basin consume on average 10 to 20% less than irrigation districts with flat rate pricing. 	N/A	N/A		N/A
319		Nutrients trading scheme	G	Nutrient trading within a watershed is a way of allocating the total amount of pollutants that enter a water body. These trades can take place among point sources; between point and nonpoint sources; or, among nonpoint point sources.	Potential reduction in eutrophication risks in areas with less nutrient input.	Europe			
96	Does erosion protection necessarily entail nutrient management? WHEN APPLIED IN A AGRICULTURAL CONTEXT VES	Community led Soil and Water Conservation on Hillsides (erosion control)	Н	 Elephant grass was planted along contour bands on hillsides Water catchment ditches were constructed in banana plantations. Grasses were used for building materals, doffer alternative, and mulch for bananas. 	•Soils were protected from erosion.	Uganda	Transboundary Agro- ecosystem Management Programme for the Lower Kagera River Basin		
166		Minimizing erosion in cultivation systems	H S	 Using discs or tines to cultivate the soil or direct drill into stubbles (no-till) will maintain organic matter and preserve good soil structure. This measure is not suitable for all soil types, e.g. sandy soils, already compacted soil, and certain crops such as potatoes. The best soils for minimal cultivation systems include clays, silty clay loams or clay loams 	Non-plowing reduces sedimentation and nutrient run-off, as well as soil compaction. This will improve infiltration and retention of water and thereby decrease total phosphorus concentrations in surface run-off. •Crop residues limit evaporation, thus retaining water for crop growth. Switching from plowing to minimal cultivation reduces energy consumption. • Impacts to soil structure are also avoided since loosening systems are eliminated. Minimal cultivation also reduces the risk of soil compaction due to traffic.	N/A	N/A		Cost of buying new machinery.
183	Should detailed descriptions of terraces be kept? YES	Retaining and creating terraces	н	 Terraces prevent the downward flow of rainwater and soil. Terraces retains soil, which helps to maintain crop yields. Four types of terracing – bench, channel, narrow and broad based ridge – reduce the length of slope on a hill side, which can help to reduce erosion and prevent gully formation. Bench terracing is done on relatively steep slopes and consists of excavating upper parts of the slope and filling the lower part with the soil materials from the upper parts. Channel terraces are wide, shallow channels that follow the land's contour line. Narrow based terraces consist of a number of ridges spaced 1-2 meters apart across the slope; this type is especially found in high rainfall areas. Broad based ridge terraces are wide, low bunds following natural contour lines. Soil is excavated from both sides of the terrace; this 	 Since terrances prevent the downward flow of rainwater and soil, this measure has the potential to reduce nutrient overload in near by water bodies, thus reducing possibilities of eutrophication. Sedimentation resulting from excess soil run-off is also avoided. 	N/A	N/A		N/A
185		Soil Erosion plans	Н	 By devising national or regional solid regions of the terrace, this By devising national or regional solid region plans, activities centred around reducing soil erosion can be streamlined and more effective. Currently a small number of MS are planning to come up with such plans to mitigate environmental issues, for example desertification. 		N/A	N/A		N/A
252	No actual project activity described: conservation practices are not case studies but descriptions of recommended activities. PLEASE RESEARCH OUTCOMES. SAME BELOW.	Bedding	Η	 Bedding: Plowing, blading, or otherwise elevating the surface of flat land into a series of broad, low ridges separated by shallow, parallel channels with positive drainage. This practice applies to all land uses with flat to nearly flat topography and poorly drained soils where a wetland determination and scope and effect evaluation permit installation. 		USA	Conservation Practices		
257	No actual project activity described: conservation practices are not case studies	Contour Farming	Н	 Ridges and furrows formed by tillage, planting and other farming operations are formed to change the direction of runoff from directly downslope to around the hillslope. 		USA	Conservation Practices		

24.8 Non-starting starting startin starting starting sta				 1	r	1			
Image: Sector	258		Cross Wind Ridges: forming ridges across H the direction of erosive winds			USA	Conservation Practices		
Image: Second person balance Image: Second person balance Image: Second person balance Image: Second person balance 74 Second person balance Manual Second person balance Manua		practices are not case studies		•The ridge orientation, height, spacing, and time period that ridges					
Image: Section of the section of th									
Image: Second approximation of the second approximation		recommended activities							
Instruction instructions Instruction instructions Instruction instructions Instruction instructions Instruction instructions				the conservation management system.					
Instruction instructions Instruction instructions Instruction instructions Instruction instructions Instruction instructions									
Image: section interview Image: main in									
Instruction instructions Instruction instructions Instruction instructions Instruction instructions Instruction instructions	250								
1 Matter and matched mat	259					USA	Conservation Practices		
12 Interpretational state specific and stat									
1 Incomposite densities 1			deross the prevailing crossen direction.						
Baseline distance Description distance De		recommended activities							
Image: Second Construction of Decision Control London, Mine Watch Image: Second Control Control Control London, Mine Watch Image: Second									
Image: Second Construction of Decision Control London, Mine Watch Image: Second Control Control Control London, Mine Watch Image: Second									
Image: Second Construction of Decision Control London, Mine Watch Image: Second Control Control Control London, Mine Watch Image: Second									
Image: participant discusses and participant discuses and partind discus discusses and discusses and participant disc	274	No actual project activity	Managing in place patural materials mine.	all place patural materials mine speil (evenuated over burden) mine			Concernation Practices		
Implementation Imple	2/4					USA	conservation Flactices		
Implementation Imple	1								
Importantial electrical	1								
Image: Section of the rest order statum polyholing in register st	1								
Image: Section of the area under autom pools with regions where restant excess of encine status of an educe and integer and is subject with section in educe and indices of encine where each mark excess in additional to control of damage ways. In additional to control with equipation in additional with excession in educe and indices. The additional is additional with excession in educe and indices of encine where each mark excession encine where each mark excess in additional to control with equipation. In educe and indices where each mark excession in educes and indices where each mark excession in educes and indices of encine where each mark excession in educes. Image: Predicing solid endition in educes and indices of encine where each	1			manner that will cause damage to life, property, or the environment.					
Image: Section of the area under autom pools with regions where restant excess of encine status of an educe and integer and is subject with section in educe and indices of encine where each mark excess in additional to control of damage ways. In additional to control with equipation in additional with excession in educe and indices. The additional is additional with excession in educe and indices of encine where each mark excession encine where each mark excess in additional to control with equipation. In educe and indices where each mark excession in educes and indices where each mark excession in educes and indices of encine where each mark excession in educes. Image: Predicing solid endition in educes and indices of encine where each	1								
1 Image: Section of the area under solution public in regions where reaction concretes studies ratio be and covering damage ways in the regions main rates of ension mark costs in regions where reaction concretes studies ratio and excerning damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible in the covering damage ways in the reaction in reactions and possible instruction in reactions and reactions and possible instruction in reactions and possible instruction in reactions and possible instruction in reactions and reactions and possible instruction in reactions and reactions and possible instruction in reactions and reaction and reaction in reactions and									
Image: Section of the area under autom pools with regions where restant excess of encine status of an educe and integer and is subject with section in educe and indices of encine where each mark excess in additional to control of damage ways. In additional to control with equipation in additional with excession in educe and indices. The additional is additional with excession in educe and indices of encine where each mark excession encine where each mark excess in additional to control with equipation. In educe and indices where each mark excession in educes and indices where each mark excession in educes and indices of encine where each mark excession in educes. Image: Predicing solid endition in educes and indices of encine where each									
Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn plogling in regions succeptible to sold Image: Section of the area under atumn region of the area under atum region of the area under atum region of the area under at	324								
Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area									
Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area under autumn plophymic regions susceptible to sold Image: Section of the area									
Image: Section of the area under autumn ploughing in rigions susceptible to soil erdices H Image: Section of the area under autumn ploughing in rigions susceptible to soil erdices Products goil erosion, natural soil feetility is maintained, thus sedimentation and posible reduction is eutroplication. Reduction of the submet and soil erdices Image: Section and Section is eutroplication. Reduction is sedimentation and posible reduction is eutroplication. Reduction is sedimentation and posible reduction is eutroplication. Reduction is reduces Image: Section and Section is sedimentation and posible reduction is eutroplication. Reduction is reduces Image: Section and Section and Section is reduces Image: Section and Section and Section is reduces Image: Section and Section is reduces Image: Section and Section and Section is reduces Image: Section and Section and Section and Section is reduces Image: Section and Section is reduces									
Image: Section of the area under autumn ploughing in regions susceptible to sail errosion H Section of the area under autumn is alumn and spice exclusion in europhication. Reduction in sedimentation and posite enduction in europhication. H Image: Section of the area under autumn is alumn and spice enduction in sedimentation and posite enduction in europhication. H Image: Section of the area under autumn is alumn and spice enduction in section and posite enduction in europhication. H Image: Section of the area under autumn is alumn and spice enduction in section and posite enduction in europhication. H Image: Section of the area under autumn is alumn and spice enduction in section and posite enduction in europhication. H Image: Section of the area under autumn is alumn and spice enduction in section and posite enduction in section and posite enduction. Image: Section of the area under autumn is alumn and spice enduction in section and posite enduction and section and posite enduction and secosposite posite enduction and section and posite enduc									
Image: specific state Image: specific state <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
Image: Section of the section of t									
329 Image: Section of the section o						Europe			
Image: Source in the set of the set	329			prodening in the fam	renander appreadon rates are reduced.	Larope			
Image: Set in the set in									
Image: Section of the sectin of the section of the									
Image: Space of the space									
Image: Solution of the solutis of the solution of the solution of the solutis of the solution o									
Image: Second									
Image: Solution of the second seco									
Image:	1				Since terrances prevent the downward flow of rainwater and				
Image:									
Image: Note nough indo? PLASES SEE IF THERE IS ADDITIONAL INFO IN THE RE IS ADDITIONAL INFO IN The PROJECT DOCUMENT. No explicit effect on nutrient loadingUsing safe, natural fertilisers (including in bosphorous) and soil conditioners.IO• State site is a proving in a state compost was established in 1 household • Household composting in 36 households • Training on household • Improved livestock grazing practices were implemented • Improved livestock grazing practices were implemented • Improved livestock grazing practices were implemented • Improved livestock grazing practices. • Farmers, youth, students and other categories of	1				in near by water bodies, thus reducing possibilities of				
9 Not enough info? PLEASE SEE IF THERE IS ADDITIONAL INFO IN THERE IS ADDITIONAL INFO IN TRAINING IN COMMENTION In adding Using safe, natural fertilisers (including phosphorous) and soil conditioners. I 0 *Experimental garden for urine and human waste compost was established in 1 household *Training on household composting in 36 households *Training on household composting in 36 households *Training on household composting for villagers Bulgaria Developing a Model for Sustainable mutal Areas in Bulgaria N/A 14 No explicit effect on nutrient loading Using manure as fertilizer I N *Manure was used as fertilizer *Crop rotation was implemented *Improved livestock grazing practices were implemented *Improved livestock grazing practices were implemented *Improved livestock grazing practices were informed and trained in nonpolluting agricultural practices. *Water quality and agricultural productivity were increased, agriculture practices Romania Agriculture Pollution Control Project - under WB-GEF Strategic Pollution Control Project - under WB-GE	1								
THERE IS ADDITIONAL INFO IN THE PROJECT DOCUMENT. No explicit effect on nutrient loading phosphorous) and soil conditioners. Image and soil conditioners. <thimage and="" conditioners.<="" soil="" th=""> Image and soil conditioners. Image and soi</thimage>	0				excess soil run-off is also avoided.	Europe	Davalanian e Medel fer	NI / A	
THE PROJECT DOCUMENT. No explicit effect on nutrient loading Management for Rural Areas in Bulgaria Management for Rural Areas in Bulgaria 14 No explicit effect on nutrient loading Using manure as fertilizer I N •Manure was used as fertilizer •Manure was used as fertilizer Moldova Agricultural Pollution Control Project - under WB-GEF \$10,740,000	Э					вигдагіа		IN/A	
No explicit effect on nutrient loading No explicit effect on nutrient loading Using manure as fertilizer I N •Training on household composting for villagers Image: Composition of the compositic composition of the composition of the co			phosphorous) and son conditioners.						
IndianIndin	1								
loading Image: Same as #13 OKAY Ima		loading		 •Training of local trainers			0		
Image: Same as #13 OKAY Training Farmers to implement organic agriculture practices N *25 farmers were informed and trained in nonpolluting agricultural practices and agricultural practices. *Water quality and agricultural productivity were increased, and sustainable rural agricultural practices. Romania Regricultural Pollution Control practice \$1,100,000 Image: Same as #13 OKAY Training Farmers to implement organic agriculture practices N *25 farmers were informed and trained in nonpolluting agricultural practices. *Agricultural Pollution Control practices. Romania Agricultural Pollution Control agricultural practices. *Farmers, youth, students and other categories of citizens and agricultural terrains owners were involved in rehabilitation and agricultural errains owners were involved in rehabilitation and agricultural practices. Romania Romania Agricultural Pollution Control Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Agricultural practices. *Farmers, youth, students and other categories of citizens and agricultural errains owners were involved in rehabilitation and agricultural errains ownere involved in rehabilitation and agricultural errains ow	14		Using manure as fertilizer			Moldova		\$10,740,000	
Image: Same as #13 OKAY Training Farmers to implement organic agriculture practices • 25 farmers were informed and trained in nonpolluting agricultural productivity were increased, and sustainable rural agricultural terrains owners were involved in rehabilitation and agricultural terrains ownere involved in rehabilitation and agricultural terrains ownere inv	1	loading							
Image: Same as #13 OKAY Training Farmers to implement organic Image: Same as #13 OKAY Training Farmers to implement organic Image: Same as #10 of the same as #13 OKAY Mater quality and agricultural productivity were increased, and sustainable rural agricultural productivity were increased, and sustainable rural agricultural productivity were increased. Romania Agricultural Pollution Control \$11,100,000 18 Same as #13 OKAY Training Farmers to implement organic Image: Same as #10 of the same agricultural productivity were increased, and sustainable rural agricultural productivity were increased, and sustainable rural agricultural productivity were increased. Romania Agricultural Pollution Control \$11,100,000 Image: Same as #13 OKAY Noter quality and agricultural productivity were increased, and sustainable rural agricultural productivity were increased, and sustainable rural agricultural productives, local agricult				 Improved livestock grazing practices were implemented 					
Image: Note of the system o	1								
agriculture practices practices. progress was made towards compliance with EU directives, local Project - under WB-GEF • Farmers, youth, students and other categories of citizens and agricultural terrains owners were involved in rehabilitation and institutions' capacity was increased, and sustainable rural Strategic Partnership for • Nutrient Reduction in the								.	
• Farmers, youth, students and other categories of citizens and agricultural terrains owners were involved in rehabilitation and growth and development were increased. Strategic Partnership for Nutrient Reduction in the	18	Same as #13 OKAY				Romania		\$11,100,000	
agricultural terrains owners were involved in rehabilitation and growth and development were increased. Nutrient Reduction in the	1		agriculture practices						
	1								
					Brown and development were increased.				

21	Same as #21 -LIKELY SOIL TESTING AND PLANT ANALYSIS	Considering actual crop needs	1	0		 A solid basis to agricultural production principles was provided using agrochemical lab testing and disease monitoring, managed by farmers' associations. A scientific monitoring and community-based information system was established to reduce pesticide applications and excessive nutrient application. Local apple farmers collaborated with farmers' organizations to reduce nutrient application. Optimal fertization was determined based on individual qualities. 	Environmental impacts of agriculture were reduced Pesticide levels in the soil decreased	nia	Prespa Lake Integrated Ecosystem Management. Intervention 2: Reducing Environmental Impacts of Agriculture	\$13,140,000 \$13,140,000	
	LED TO SPECIFIC APPLICATIONS OF FERTILIZER. PLEASE RESEARCH THE PROJECT							ma	Ecosystem Management. Intervention 2: Reducing Environmental Impacts of Agriculture		
26		Prohibiting application of mineral fertilizers to snow cover and frozen soil	1	Q				Estonia, Russia	Development and implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4,770,000	
28		Controlling application, transport and storage of mineral fertilizers and pesticides	1					Estonia, Russia	Development and Implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4,770,000	
29		Promoting low fertilizer and pesticide application rates	1					Estonia, Russia	Development and Implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4,770,000	
94	What was the resulting impact on nutrients? MORE SUSTAINABLE PRACTICE	Organic Agriculture: Reducing the dependence on the use of chemical fertilizers, pesticides, and pharmaceuticals	I	Ρ		 Reduced the dependence on the use of chemical fertilizers, pesticides, and pharmaceuticals. Established community-based composting facilities Upgraded existing compost fungus activator production laboratories Upgraded and rehabilitated biological nitrogen fertilizer mixing plants. Rice and corn production began using organic fertilizer 	•No economic analysis	Philippines	The Organic Fertilizer Production Project		N/A
122		Employing slow release and specialty fertilizers	I			•Fertilizers were programmed to release nutrients at intervals synchronized with crop physiological stages, and improve Nutrient Use Efficiency.	Nutrient loss to the environment was reduced.	India	N/A		N/A
	General management: separate category? THIS IS THE 4Rs. PLEASE CATEGORIZE AND LOOK AT IPNI DOCUMENT FOR HOW TO TITLE AND DESCRIBE.	Managing crop nutrients	1	0		The 4Rs utilize fertilizer best management practices that address the Right Fertilizer Source, at the Right Rate, the Right Time, and in the Right Place. •For N, rates can be adjusted for in-season pre-sidedress tests, profile nitrate test, organic matter test. •P applications should be guided by P source, runoff potential, sediment transport, and soil conditions.		N/A	N/A		N/A
156		Avoiding spreading fertilizer and manure at high risk times	1	N	0	 nitrate leaching and loss of phosphorus through surface run off is diminished by avioiding spreading fertilizer and manure at high risk times. High risk times include when there is a high risk of surface flow, rapid movement to field drains from wet soils or when there is little or not crop uptake. The measure requires adequate collection and storage facilities. Surface run off risk is the greatest when rain falls onto sloping ground with saturated, frozen or snow covered soils. Rapid flow of nutrients through the soil is most likely to occur from drained soils when they are wet and rainfall follows soon after applying fertilizers. Away to avoid leaching in the winter due to rainfall is to apply nitrogen in the autumn. The method may limit opportunities for manure application before some spring crop are sown. 	 Estimates expect a reduction of the P baseline losses of 50% on the sandy loam and 20% on clay loam soil. Storage can lead to some increases in ammonia and methane emissions, so minimum specifications are required to reduce such losses. 	N/A	N/A		N/A

157	Avoiding spreading fertilizers and manure I in high risk areas	N 0	 Never applying mineral fertilizers and manure to high risk areas helps to prevent run-off of nitrate and phosphorus in the watercourses. Risk areas include areas with flushes draining to a nearby watercourse, cracked soils over field drain or fields with high phosphorus number. To determine Phosphorus risk areas, a risk index or specific risk factors can be used. Areas with a high phosphorus index have a significant risk of losing P through eroded soil particles and by leaching. Applying manure to these areas will increase the excessive phosphorus content of the soil and increase the amounts lost. This method is most effective against losses of phosphorus where the primary mechanism of transport is surface run-off. High risk areas are field areas with direct flow paths to watercourses 	such areas reduces the risk of manure or fertilizer draining into field drains and transporting pollutants into surface or groundwater. • Furthermore, the method also allows for a reduction in ammonium-N losses and nitrous oxide emissions.	N/A	N/A	N/A
172	Preparing nutrient balances to inform farmers on the efficiency of nutrient utilization and help to identify the cropping phases in which nutrients are lost.		 The preparation of nutrient balances is a beneficial tool for long-term planning of fertilizer use. Nutrient balances inform farmers on the efficiency of nutrient utilization and help to identify the cropping phases in which nutrients are lost. The calculation of nutrient balances help to strengthen water protection measures for each farm and parcel. Creating a nutrient balance spread sheet helps to accurately account for fertilizer use to decrease application, which helps to keep excess nutrients in the soil to a minimum. It also maximises efficient use of nutrients already in the soil by ensuring that the soil is in a sufficiently fertile state. Accurate fertilizer application, which is based on the crop type, its yield and the characteristics of the parcel to the economic optimum, will ensure that the necessary quarities of the essential crop nutrients are only available when required for uptake by the crop. 	analysis, eutrophication and excessive algal growths caused by nutrient leaching from fields can be minimised or avoided. •Groundwater (used for drinking water supplies) contamination resulting from high nitrate content can also be minimised or avoided. •As nutrient management systems incorporating nutrient	N/A	N/A	N/A
176	Reducing fertilization I		 Reducing the amounts of nitrogen and phosphorus fertilizers by a certain percentage below the economic optimum will reduce the residual nitrate in the soil after harvest and in the short term the amount of soluble phosphorus. 	 By reducing fertilizer application, eutrophication and excessive talgal growths that results from N and P leaching can be minimised or avoided. Groundwater (used for drinking water supplies) contamination resulting from high nitrate content can also be minimized or avoided. In the long term, reducing phosphorus fertilizers can reduce the amount lost as particulate phosphorus. There will be a reduction of residual soil nitrate available for leaching in the autumn but there will be no effect on the nitrate minerailzed from soil organic matter. For a long run when soil phosphorus reserves will be run down there will be a reduction in soluble phosphorus loss. 	N/A	N/A	
195	Build-Maintenance approach I	T	 Fertilizer rate recommendations are made to meet the nutrient requirement of the immediate crop and to raise soil test values to the critical level over a specified time period. Once the soil test value is raised to the critical level, the soil is largely capable of meeting the crop nutrient requirement in a given year and only the amount of nutrients removed with the crop are applied to maintain the soil test levels in a target range slightly above the critical level. Once soil test values exceed this target range, no nutrient application will be recommended—except for the small amounts supplied in starter fertilizer applications. 			CEU in Nutrient Management	

196		Nutrient Sufficiency Approach: applying enough fertilizer to maximize profitability in the year of application without considering future soil test values	0	 The goal is to apply, on average, just enough fertilizer to maximize profitability in the year of application without considering future soil test values. The recommended rate will be relative to a "critical" soil test level, a which the soil is capable of supplying nutrient amounts sufficient to achieve about 90 to 95% of maximum yield. The recommended rate will exceed crop removal at very low soil test levels and approach zero as the soil test value reaches the critical level—although a small amount of fertilizer (particularly P and/or K) is often suggested in starter applications. 	t		CEU in Nutrient Management		
239		Nutrient Application Methods	0	To minimize nutrient losses: •Apply nutrient materials uniformly to application area(s) •Do not apply nutrients to frozen, snow-covered or saturated soil if the potential risk for runoff exists •Consider plant growth habits, irrigation practices, and other conditions so as to maximize availability to the plant and minimize the risk of runoff, leaching, and volatilization losses •Apply nutrients associated with irrigation systems in a manner that prevents or minimizes resource impairment.	Proper nutrient application methods reduce the risk of nutrient transport to surface and ground water, or into the atmosphere shall be employed.	USA	Natural Resources Conservation ServiceConservation Practice Standard Nutrient Management		
242		Enhancing soil productivity through a balanced use of local and external sources of plant nutrients		 Soil productivity is enhanced through a balanced use of local and external sources of plant nutrients in order to maintain or improve soi fertility. 		Rome	Guide to Efficient Plant Nutrition Management		
315		Integration of fertilizer and manure nutrient supply	- M	Determining the amount of nutrients supplied to soils during manure application helps farmers to judge the amount and ideal timing of additional fertilizers required by the crop. Excessive application of mineral fertilizer applications is avoided, so optimum economic production level can be reached and soils can be adequately maintained. The method is most effective on farmers where manure i supplemented by mineral fertilizers.	Taking better account of the nutrients contained manure can reduce the need for fertilizer inputs, which in turn minimises nitrate and phosphorus losses. By integrating fertilizer and manure application, dentrification, which leads to increased s levels of nitrogen oxide emissions, can be minimised as a result of proper scheduling.	Europa			
v r	Actual activities not described: which nonpolluting practices reduce nutrient load? THIS IS MORE A PROJECT THAN PRACTICE,	nonpolluting agricultural practices		• Environmental awareness was increased among farmers, civil society and authorities • Responsibility of LPA and citizens toward environmental protection increased • Unauthorized dumping sites were liquidated • Levels of competency and practical abilities to promote and apply th best agricultural practices for farmers increased • Transboundary experience and knowledge was shared in the field of practical application of environmentally oriented agricultural practices.	 Nutrient load of the Danube hydrographic basin was reduced. 	Moldova, Bulgaria, Romania	Danube Regional Project (DRP) Small Grants: Small Grants: Best Agricultural Practice in my Farm: NGOs, Farmers, Specialists Working together for BAP in Bulgaria, Romania and Moldova	\$36,676	
r e S T	No specifics on what management practices were employed. YOU MIGHT ADD SOME MORE DESCRIPTION TO THE TITLE OVERALL NUTRIENT MANAGEGMENT	Encouraging best agricultural practices and management of nutrient losses	1	 Measures were taken to control pollution from crop production, programme strategy focusing on the prevention of nutrient pollution from plant production. Sound scientific base for the long-term water management is in place; Stakeholder capacities were raised. Joint monitoring activities weres supported and carried out; Joint data processing and databases were established; Information exchange and networking was begun Public/local stakeholders were engaged in program administration 		Estonia, Russia	Development and Implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4.770,000	
62		Improving living conditions and hygiene facilities	1			Bulgaria	Developing a Model for Sustainable Water and Waste Management for Rural Areas in Bulgaria	N/A	
108		Continual Mulching	J			Philippines and Cambodia	LTRA-12: Conservation agriculture for food security in Cambodia and the Philippines		N/A
110		Prioritizing local resource use preferences	J			India and Nepal	LTRA-11: CAPS among tribal societies in India and Nepal		N/A

136	How does carbon sequestration affect nutrients in water supply? THIS IS JUST ANOTHER BENEFIT	Carbon Sequestration J	Carbon offsets: 2.3 mtCO2 by 2017	Tanzania, Uganda, I	The International Small Group enya and Tree Planting Program	\$1,200,000
137	WE NEED THE PROCESS AND	Carbon Sequestration J		Mauritan Senegal	a and Participatory Rehabilitation of Degraded Lakes	\$8,000,000
138		Carbon Sequestration J		Sudan	Community-based Rangeland Rehabilitation for Carbon Sequestration	\$1,500,000
139		Carbon Sequestration J	Carbon offsets: 5.3 mtCO2	Benin	Village-based Management of Woody Savanna & Establishment of Woodlots for Carbon Sequestration	\$2,500,000
140		Carbon Sequestration J	Carbon offsets: 1.5 mtCO2	Bukina Fa	so Sustainable Energy Management Project	N/A
141		Carbon Sequestration J	Carbon offsets: 7.1 mtCO2 over 99 years	Uganda	Forest Rehabilitation in Mt. Elgon & Kibale National Parks	N/A
142		Carbon Sequestration J		Mozambi	ue Nhambita Community Carbon Project	N/A
143		Carbon Sequestration J	Carbon offsets: 0.9 mtCO2 by 2012	Uganda	Plan Vivo Project	\$1,355,000.70
144		Carbon Sequestration J		Кепуа	Western Kenya Integrated Ecosystem Management Project	\$4,100,000
145		Carbon Sequestration J		Senegal	Sequestration of Carbon in Soil Organic Matter	N/A
146		Carbon Sequestration J	Carbon offsets: 2.3 mtCO2	Tanzania Uganda	IND Commercial Plantation Projects	\$600,000
147		Carbon Sequestration J		Mali	Carbon from Communities	\$140,000
148		Carbon Sequestration J	Carbon offsets: 2.81 mtCO2 by 2017	Democrat Republic Congo		N/A
149		Carbon Sequestration J	Carbon offsets: 0.25 mtCO2 by 2017	Uganda	Nile Basin Reforestation	N/A
150		Carbon Sequestration J	Carbon offsets: 1.8 mtCO2 by 2017	Niger	Aracia Community Plantations	N/A
151		Carbon Sequestration J	Carbon offsets: 0.95 mtCO2 by 2017	Mali	Aracia Community Plantations	N/A

152		Carbon Sequestration	J	Carbon offsets: 0.4 - 4.0 mtCO2 by 2017		Madagascar	Andasibe-Mantadia Biodiversity Corridor		\$150,000,000
153		Carbon Sequestration	1	Carbon offsets: 0.6 mtCO2 by 2017		Kenya	Green Belt Movement		N/A
154		Carbon Sequestration	1	Carbon offsets: 5.02 mtCO2 by 2017		Ethiopia	Humbo Assisted Regeneration		N/A
199	What is "liquid dairy storage"- is this talking about milk, manure or both?	Covering liquid dairy storage to prevent transfer of volatile compounds.	L	•Using permeable plastic over liquid dairy storage creates a physical barrier to prevent mass transfer of volatile chemical compounds from the liquid by decreasing wind velocity (decrease surface area), and reducing radiation onto the manure storage surface (lower temperature).	n	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		
245	What does this have to do with nutrients? IT DOES NOT. BUT IS A PRACTICE FOR OVERALL WHOLE FARM PLANNING- PERHAPS DESCRIBE AS SUCH.	Constructing an access road	l	 A fixed route is provided for vehicular travel for resource activities involving the management of timber, livestock, agriculture, wildlife habitat, and other conservation enterprises while protecting the soil, water, air, fish, wildlife, and other adjacent natural resources. 		USA	Conservation Practices		
269		Controlling herbaceous weeds	L	 Herbaceous weeds including invasive, noxious and prohibited plants are removed or controlled. Herbaceous weed control will be applied in a manner to achieve the desired control of the target species and protection of desired specie This will be accomplished by mechanical, chemical, burning or biological methods either alone or in combination. 		USA	Conservation Practices		
298		Cropping history influences decisions on soil sampling depth	L	Incorporating crop history into soil analysis	Incorporating crop history can reveal information about the soil at depths greater than the average soil samples; considering if leguminous plants were previously grown on a field might reduce the recommended amount of nitrogen to be applied, for example.				
300		Water and nutrient management practices improve groundwater quality in Nebraska, USA		Increasing N removal with crop harvests, shifting from furrow to sprinkler irrigation, and changing time of application and source.	Groundwater nitrate in the area declined over time from 1987 to 2005.	Nebraska, USA			
322		Reduced fertilisation		Reduce the amounts of nitrogen and phosphorus fertilizers by a certain percentage below the economic optimum.	This will reduce the residual nitrate in the soil after harvest and in the short term the amount of soluble phosphorus. In the long term reducing phosphorus fertilizers can reduce the amount los as particulate phosphorus.				
22	Same as #21 SAME AS ABOVE	Sustainable irrigation practices	K	Groundwater and surface water resources were conserved through alternative apple orchard management.			a Prespa Lake Integrated Ecosystem Management. Intervention 2: Reducing Environmental Impacts of Agriculture	\$13,140,000	
161	Does damage to hydrological systems necessarily cause nutrient leaching? YES	Changing abstraction regimes for irrigation	n K	 Agriculture abstracts surface water during dry periods when water bodies are already naturally low, which exacerbates drought conditions. By increasing storage capabilities, farmers can abstract water during high flow times to minimise abstractions during dry period. 	•Hydrological systems are less damaged by agricultural activitie during dry periods.	s N/A	N/A		N/A
186	Does reducing water consumption count as nutrient management? NO BUT OVERALL WHOLE FARM PLANNING	Switching irrigation methods	ĸ	 By switching from spray irrigation to drip irrigation, farmers can increase efficiency in water use. This measure can help to minimise the adverse effects of water abstraction on the hydrological cycle by reducing the amount of wate used in agriculture. 	•Switching to more efficient irrigation methods can reduce water on-farm water use up to 50%. r	N/A	N/A		Center pivot [sprinkler irrigation] systems have a total 'in-field' cost of \$600 to \$1,000 per acre. Drip or trickle systems cost \$800 to \$1,600 per acre.

223		Managing Spray Fields K	N	Management of spray fields includes		USA	Management of Spray Fields	· · · · · · · · · · · · · · · · · · ·	
				•installing the appropriate manure storage, pumping and application					
				equipment					
				selection of an appropriate crop					
1				 estimating a rate of application that will avoid runoff and leaching of 					
				phosphorus and other nutrients					
				 supplying the crop with sufficient nutrients while avoiding over- 					
				irrigating and over-fertilizing the spray field.					
				 Irrigation of spray fields should not exceed the infiltration rate of the 					
				soil, otherwise runoff will result. For many soils this should not be					
				greater than 1 inch per 24 hours.					
				•Where possible, spray field applications should correspond with the					
				active growing season for the crop or pasture.					
				 Application rates should not exceed the nitrogen requirements of the 	e				
271		Managing Irrigation Water K		 The volume, frequency and application rate of irrigation water are 		USA	Conservation Practices		
				controlled to ensure water is used in a planned, efficient manner.					
				•Water shall not be applied in excess of the needs to meet the					
				intended purpose.					
1				 Measurement and determination of flow rate is a critical component 					
1				of irrigation water management and shall be a part of all irrigation					
				water management purposes.					
272	Would nutrients end up in the	Constructing Irrigation Reservoirs K	v	 An irrigation water storage structure is made by constructing a dam, 		USA	Conservation Practices		
1	irrigation reservoir? Would it			embankment, pit, or tank.					
	prevent nutrients from being			•Storage capacity, and inflow/outflow capacity requirements for					
	applied to crops? MORE			irrigation storage reservoirs are designed and planned.					
	RESEARCH NEEDED.			 Storage reservoirs are planned and located to serve as an integral 					
				part of an irrigation system.					
294									
					The results showed that drip irrigation increased tuber yield, N				
					recovery efficiency, and water use efficiency over flood	NW China (arid			
				Study conducted on the effects of drip vs. flood irrigation on potato	irrigation. The results also showed that reduced N application	to semi-arid,			
		Adapting N management for potato to		tuber yield, as well as the effect of reducing the nitrogen applied to	(50%) produced similar potato tuber yield but further increased		F		
		irrigation regime in China K	â	50% vs. leaving it at 100%.	the N recovery efficiency.	200-400mm)			
		irrigation regime in China K	0	Often times, agriculture abstracts surface water during dry periods	the N recovery efficiency.	200-400mm)			
307	Same as 186			when water bodies are already naturally low, which exacerbates					
				drought conditions. By increasing storage capabilities, farmers can					
		Changes in abstraction regimes for		abstract water during high flow times to minimise abstractions during		1			
		irrigation K		dry period.	regime.	Europe			
332									
				By switching from spray irrigation to drip irrigation, farmers can	This measure can help to minimise the adverse effects of water				
				increase efficiency in water use. Switching to more efficient irrigation	abstraction on the hydrological cycle by reducing the amount of				
		Switching irrigation methods K		methods can reduce water on-farm water use up to 50%.	water used in agriculture.	Europe			
160	No project information	Cessation of agricultural land use for L			 reduces physical pressures on rivers (e.g. water abstraction for 	N/A	N/A		N/A
_00	available. WHERE DID THIS	permanent grassland			irrigation)	,			
	COME FROM?	permanentegrassiana			o ,				
165		Converting to extensive grassland		 Converting from agriculture to grassland has most potential in areas 	reduces diffuse nutrient pollution to water bodies. The reduction in N and P will reduce eutrophication potential in	N/A	N/A		N/A
102		Converting to extensive grassland L				I N/A	N/A		IN/A
1				previously used as grazing pastures due to its conservation value.	nearby water bodies.		1		
1				 This measure will reduce nitrogen and phosphorus losses due to 	 Permanent grass cover reduces soil erosion. 		1		
				lower inputs in the area.	 Biodiversity in the area is also improved. 		1		
1									
1									
1							1		
1									
1									
182	How is this related to nutrient	Restricting agricultural activities on slopes L		 Slopes are high risk areas for soil erosion. 	 By restricting agriculture activities on slopes soil erosion and 	N/A	N/A		N/A
1	management? LIMITS EROSION			•This measure includes guidelines for farmers on restrictions of land	excess water run-off can be avoided.	1'	1		
1	indiagement: Elimito Eliosion			uco	•Less sedimentation and pollution from water run-off.				
					Less seumentation and ponution nom water run-on.				
				Exclusion of growing of wide-row crops (such as) maize, potatoes,			1		
				beet, broad beans, soya-beans, and sunflowers on field blocks,			1		
				eventually on parts of field blocks whose average slope exceeds 12					
L				dogroop					
235		Retiring Land L		 Highly erodible lands were retired from cropland and replaced with 	 Erosion and nutrient loss was decreased. 	<mark>USA</mark>	Guidance for Federal Land		
			1 1	perennial native vegetation			Management in the		
				perciniar native vegetation					
				•A soil conservation plan and a nutrient management plan were			Chesapeake Bay Watershed		
				•A soil conservation plan and a nutrient management plan were					

244	What is the outcome? Does "desired resource conditions" involve soil nutrient content? LIMITS ACCESS TO WATER	Excluding animals, people, v equipment from an area	vehicles and/or L	 Desired resource conditions are achieved by monitoring and managing the intensity of use by animals, people, vehicles, and/or equipment in coordination with the application schedule of practices, measures and activities specified in the conservation plan. 	,	USA	Conservation Practices		
256	I can see how this would affect the nutrient content of the soil, but it's not included in the description. PLEASE ADD	Closing Waste Impoundmer	nts L	Waste impoundments (treatment lagoons and liquid storage facilities), that are no longer used for their intended purpose, are closed in an environmentally safe manner.		USA	Conservation Practices		
267	No direct connection to nutrients LIMITS ACCESS TO WATER AS WELL	Protecting Heavy Use Area	L	 Areas frequently and intensively used by people, animals or vehicles are stabilized by establishing vegetative cover, surfacing with suitable materials, and/or installing needed structures. This practice applies to agricultural, urban, recreational and other frequently and/or intensively used areas requiring treatment to address one or more resource concerns. 		USA	Conservation Practices		
306		Cessation of agricultural lan permanent grassland	nd use for	Agricultural lands are permanently retired and converted to grassland Subsidies for this measure will be required to ensure that farmers participate.	d. This measure reduces physical pressures on rivers (e.g. water abstraction for irrigation) and at the same time reduces diffuse nutrient pollution to water bodies.	Europe			
311									
		Conversion to extensive gra	assland L	Retire agricultural lands and convert into grasslands. Converting from agriculture to grassland has most potential in areas previously used a grazing pastures due to its conservation value.					
37		Adjusting livestock Density	м	 Lifestock density was adjusted in order to ensure a balance of N content from manure and feed. N content was capped at 170kg/ha 	 Nitrogen load was reduced and nitrogen overload to surrounding systems was prevented. 	Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
177		Reducing livestock density	м	 A decrease in livestock density has a two-fold effect: reduction in physical impacts and a reduction in chemical impacts. Physical impact, such as soil compaction and loss of vegetation cove are mitigated. A reduction in livestock numbers on farms decreases excess manure. As a result, there is less of a need to build storage facilities and this is less risk of nutrient run-off. Reducing livestock density can have a positive impact on water in that nutrient run-off resulting from manure application is minimised. 	 Reducing livestock density can reduce nutrient surpluses at a local and regional level, depending on the level of commitment. r, water quality in neighbouring streams improves and threats of eutrophication are reduced. Fewer livestock can improve biodiversity; heavily grazed plant species can regenerate. Ammonia emissions from manure are also reduced. 	N/A	N/A		N/A
<u>197</u> 201		Poultry Litter Treatment Dairy Precision Feeding: Rec quantity of P and N fed to lin formulating diets to minimi: excretion.	ivestock by	•Dairy Precision Feeding reduces the quantity of P and N fed to livestock by formulating diets to minimize nutrient excretion. •Dairy precisions feeding reduces the quantity of phosphorous and nitrogen fed to livestock by formulating diets within 110% of Nutritional Research Council recommended level in order to minimize the excretion of nutrients without negatively affecting milk production.	Nutrient excretion is minimized.	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		
212		Offstream watering with fer	ncing M	 Animals are excluded from streams. Alternative watering is provided. Fencing is installed to eliminate livestock access to narrow strips of land along streams. 	 The implementation of stream fencing should substantially limit livestock access to streams, eliminating direct manure deposition to streambeds and banks and reducing erosion and nutrient deposition to riparian areas. 	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		
213		Offstream watering without	t fencing M	 Alternative drinking water sources are created away from streams to reduce the time livestock spends near and in streams and streambanks. 	 This reduces direct manure deposition to streambeds and banks. Erosion and nutrient deposition to riparian areas are also reduced. 	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		

218		Managing Barnyard/Feedlot Runoff	M	 A system was planned for collection, treatment and reduction of runoff from a barnyard/feedlot to improve water quality. 	 Intercepting or preventing outside water from entering the barnyard/feedlot using roof gutters, drip trenches or surface water diversions keeps clean water out of the barnyard/feedlot. 	USA	Barnyard/Feedlot Runoff Management	
219	Restructure to emphasize nutrient load reducing possibilities YES	Adopting recommended dietary phosphorus levels for dairy cows	M	 Given the direct relationship between the amount of P fed to dairy cows and the amount of P in manure, the simple practice of adopting the dietary P recommendations for dairy cows recently established by the National Research Council (NRC, 2001) would greatly reduce manure P levels and would help farmers meet manure P-based management practices. The P requirement of most lactating dairy cows can be met if the diet contains 0.32-0.38 percent P. Holstein cows producing milk containing 3.5 percent fat and 3.0 percent True protein have a dietary requirement (dry matter basis) of 0.32, 0.35, 0.36 and 0.38 percent P for milk production amounts of 55, 75, 100, and 120 lbs/day, respectively. Many dairy farmers feed P in great excess of these NRC-recommended levels. 		USA	Dietary Phosphorus Levels for Dairy Cows	
221	"Most phosphorus (P) loss from grazing systems occurs through surface runoff, which carries both dissolved and particulate forms of P to surface waters." attaching this information to practices reducing surface runoff would connect to nutrient loss. NEED MORR SPECIFICS FROM REPORT	Restricting Grazing Systems	M	 Grazing management is the manipulation of animal grazing to achieve optimum and sustained animal, plant, land, environmental or economic results while ensuring a continuous supply of forages to grazing animals. Most phosphorus (P) loss from grazing systems occurs through surface runoff, which carries both dissolved and particulate forms of P to surface waters. As surface water bodies become enriched with P, overall water quality deteriorates. An efficient grazing management system will restrict the transport of soil particles in surface runoff by maintaining good vegetative soil coverage with appropriate grass/legume species that promote physical entrapment of eroded soil particles and particulate-bound nutrients. 	coverage of the soil will also help to maintain optimum conditions for soil microflora and good soil structure.	USA	Grazing Management	
236		Excluding livestock from streams	M	Livestock were excluded from streams and streambanks. Fencing is the most reliable way to protect streams and riparian areas from the effects of livestock, and can be woven wire or electric.	This practice •Reduces nutrient inputs, •Reduces streambank erosion •Reduces sediment inputs and •improves animal health.	USA	Guidance for Federal Land Management in the Chesapeake Bay Watershed	
248	No connection to nutrient loading AGREED	Constructing Animal Mortality Facility	M	An on-farm facility was constructed for the treatment or disposal of livestock and poultry carcasses for routine and catastrophic mortality events. The facility may not be appropriate for mortality resulting from disease.		USA	Conservation Practices	
249	No connection to nutrients or water content. LIMITING THE ABILITY OF LIVE STOCK TO GET NEAR WATER HELPS	Constructing Animal Trails and Walkways	M	 Lanes or travel ways that facilitate animal movement were established. Animal trails or walkways shall be constructed wide enough to accommodate movement of animals and access by operator for management and maintenance. 		USA	Conservation Practices	
283	Define "nil and restricted" grazing systems and how an "effluent application system" is related. MORE SPECIFICS NEEDED	Restricting Grazing Systems	M	 The economic implications of nil and restricted grazing systems are examined based on data from an average new Zealand dairy farm and from a long-term farmlet study. 	 The cost/benefit analysis of both grazing systems suggested a small negative return on capital, except when the costs of an effluent application system were excluded. It is concluded that a restricted grazing system for the average New Zealand dairy farm is likely to be economically viable, on farms where an effluent application system is already in place. 	New Zealand	An analysis of environmental and economic implications of nil and restricted grazing systems designed to reduce nitrate leaching from New Zealand dairy farms: Pasture production and cost/benefit analysis.	
284	This describes bacterial content in streams: does bacteria fit in the "nutrient" THE MANURE WILL HAVE BOTH NUTRIENTS AND BACTERIA	Excluding livestock from streams	м	 Weekly grab samples were collected for 7.5 years from a small stream draining a cow pasture and analyzed for fecal coliform and enterococci. In situ measurements of pH, dissolved oxygen, temperature, conductivity, and turbidity were made during most grab sampling events. 	•After fencing, fecal coliform and enterococci levels decreased 65.9% and 57.0%, respectively. •The decreased bacteria levels were significantly different, indicating that livestock exclusion fencing was effective at reducing bacteria levels in the stream.	USA	Changes in a stream's physical and biological conditions following livestock exclusion.	

					T.,				
286	More study than best practice, need to be reworded for appendix. What is unsaturated hydraulic conductivity?that describes the ease with which a fluid (usually water) can move through pore spaces or fractures. It depends	Excluding livestock from grazing on degraded soil to allow for natural regeneration	M	The potential for degraded physical properties of soil to regenerate naturally after exclusion of grazing animals was examined at a long- term stocking rate trial in Australia.	grazing was excluded, and after 7 months and 2.5 years' grazing exclusion. • After 2.5 years, there were significant increases in unsaturated hydraulic conductivity at 5 and 15 mm tension in the ungrazed treatments compared with the grazed controls.	Australia	Changes to soil physical properties after grazing exclusion.		
287	Negative study results. Should this be included? YES- UNDERSCORE THAT IMPLEMENTING THESE PRACTICES AS PART OF A SYSTEM OF PRACTICES IS MOST EFFECTIVE. IT IS AN IMPORTANT PART.	Grazing best management practices	M	The effectiveness of grazing best management practices (BMPs), such as alternate water sources, alternate shade sources, supplemental feeding, and riparian buffers, for improving the water quality of streams in grazed watersheds of the humid region was examined. The project sites consisted of two replications of three treatments: control, selected BMPs with free access to the stream, and selected BMPs with limited access to the stream.	Results from this project indicated that minimal water quality to benefits were incurred by implementing a BMP system	USA	Effects of cattle grazing and BMPs on stream water quality.		
288	Emphasize N and P reduction in "outcomes": it gets lost with other information. EMPLHASIZE THE FIRST OUTCOME. PROVIDE MORE SPECIFICS ON WHAT HAPPENED.	Off-stream Water Source	M	 A multi-disciplinary study was conducted to evaluate effectiveness of providing cattle with an off-stream water source (i.e., water trough) in reducing stream bank erosion and fostering water quality improvements. This study was conducted on two commercial cow-calf operations in southwest Virginia which used rotational stocking. 		USA	Off-stream water sources for grazing cattle as a stream bank stabilization and water quality BMP.		
290		Restricting Grazing time	M	 This study investigated the effects of grazing management of brassica crops during winter on soil physical properties and sediment, phosphorus (P), and E. coli loss via overland flow. Dairy cows were allowed either unrestricted grazing, grazing restricted to 3 h, or no grazing. 	•For total P, the mean load in overland flow from the unrestricted grazing treatment after grazing was 3.31 mg/plot compared with restricted grazing (0.74 mg/plot) and ungrazed (0.76 mg/plot) treatments. • Treading in the unrestricted treatment decreased soil bulk density and saturated hydraulic conductivity (Ksat), and increased surface roughness, loads and concentrations of suspended sediment, and E. coli and P loss in overland flow relative to the ungrazed treatment.	USA	Restricting the grazing time of cattle to decrease phosphorus, sediment and E. coli losses in overland flow from cropland.		
291		Adjusting stocking density	M	Integrated economic-environmental model simulations performed for the Lake Fork Reservoir Watershed in northeast Texas indicate that appropriate pasture nutrient management including stocking density adjustments and more efficient commercial fertilizer use could lead to significant reductions in nutrient losses.	13% relative to baseline conditions when manure P was assumed totally plant available (Low P scenario). The soluble and	USA	Economic and environmental impacts of pasture nutrient management.		
323		Reduction in livestock density	м	Reducing livestock density can reduce nutrient surpluses at a local and regional level, depending on the level of commitment.	better and threats of eutrophication are reduced.	Europe			
3		Combining of solid and semi-solid slurry for fertilizer	N	 Slurry is a mix of of animal waste, organic matter, and sometimes water which is aged and used as fertilizer. Farmers shifted from the exclusive use of solid manure to a combination of solid and semi-solid manure and slurry for fertilisation Fertilizing with slurry increases the percentage of nutrients recirculated from manure to fertilisation on farms. 		Estonia, Latvia, Lithuania, Poland, and the Russian Federation	The Baltic Sea Regional Project, Tranche 1	\$12,450,000	
38	No connection to nutrients stated. MANAGING MANURE IS CRTICAL TO NUTRIENT MANAGEMENT WHERE IT IS THE PRIMARY FERTLIZER SOURCE.	Sustainably and cost-effectively managing manure practices	N	•Farms should have sufficient storage facilities for six months of manure production		Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
39	No connection to nutrients stated.	Sustainably and cost-effectively managing manure practices	N	Manure should not be spread between October and March		Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
L									

40	No connection to nutrients stated.	Sustainably and cost-effectively managing N manure practices	 Appropriate spreading techniques should be used for livestock manure using (for liquid and slurry) band laying system or injection 		Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
41	No connection to nutrients stated.	Sustainably and cost-effectively managing N manure practices	 Manure should ideally be incorporated into soil within 6 hours 		Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
55	Waste utilization is related to nutrients but not the same: no direct connection made.	Constructing an environmentally friendly N common village manure heap	 Manure heap was planned and built The facility was ecologically safeguarded using draining and green fences Use of the facility was regulated Environmentally-friendly utilization of organic waste was ensured Awareness was built and information and best practices were disseminated to the public. 		Bulgaria	Capacity Building for Sustainable Land Management (SLM) in Bulgaria	N/A	
57	Manure management could affect nutrient concentration in the soil, but they don't say how. MORE SPECIFICS FROM THE PROJECT	Employing new technologies for storage N and collection of manure	◆Standard design containers (normally used for garbage collection) were introduced for manure storage and collection. ◆Containers are collected by purpose-built vehicles, which haul the manure to central storage and composting facilities.		Turkey	Anatolia Watershed Rehabilitation Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$45,410,000	
60		Sustainably and cost-effectively managing N manure practices	 Technical assistance was provided to farmers receiving nitrate mitigation grants Nutrient management was planned the project to promote optimal use of organic and mineral fertilizers in order to reduce the loss of N and P to water bodies Crop cover technology was used to reduce nutrient loss, protect soil from compaction and erosion, maintain soil organic matter, enhance biodiversity and provide additional fodder and/or green manure. 	N and P loss to water bodies was reduced due to nutrient management and crop cover technology.	Croatia	Agricultural Pollution Control Project - under the Strategic Partnership Investment Fund for Nutrient Reduction in the Danube River and Black Sea	?	
101	This is talking about fertilizers that are the most productive but it doesn't say that those are the ones that are the most effective at reducing nutrient levels. MORE SPECIFICS FROM THE PROJECT	Using agro-forestry, green manures, N farmyard manures, and locally available Minjingu phosphate rock (MPR) to increase agricultural productivity	 Different organic materials were collected to prepare composts to increase productivity of various crops. Farmyard manure, maize stover, and Sesbania and Tithonia green manures were the most abundant compostable organic materials. Combinations of organic materials with and without Minjingu phosphare rock (MPR) were prepared for use as fertilizers. 		Kenya, Uganda, and Tanzania	Improving human welfare and environmental conservation by empowering farms to combat soil fertility degradation through use of agroforestry green manures, farmyard manures, and rock phosphates		N/A
130	What was actually done here? What does "inoculated legumes" mean? LEGUMES ARE TYPICALLY USED TO PROVIDE NATURAL SOURCES OF FERTILIZER.	Organic management of manure N application in legume growing	 Manure management requires planning Organic forms of nutrients are not plant available while applications made to meet N requirements will generate risks of P losses (manure has near 1:1 ratio of N:P). Properly inoculated legumes meet their N requirement by fixing atmospheric N and fertilizer inputs need to be adjusted for N credit. Cover crops capture excess N from prior crops. 		N/A	N/A		N/A
131	Take-away lessons: keep manure and animals away from water to prevent nutrients from entering waterways. YES	Managing manure and pasture N	 Manure management is challenging due to small parcels of land close to neighbors and water resources, especially drinking water wells. Manure can also be composted. Composted manure or raw manure piles should be kept away from drinking water wells, ponds, flood plains, and steep ground. Restrict animals from streams to control streambank erosion, pathogen contamination, and direct inputs of nutrients. 		N/A	N/A		N/A

155		Application techniques of manure N		 The injection of slurry effectively increases the utilization of manure nutrients compared with surface application, thus reducing potential run-off and need for more application. Eutrophication resulting from emissions can be avoided by applying manure more effectively into the soil. Slurry injection involves cutting slots in the soils, injecting the slurry and then closing these slots after application. Injecting slurry as opposed to applying it to topsoil makes it is possible to directly reach the active soil layer in order to reduce nutrient leaching. In addition, direct ground injection systems directly inject pressurized slurry into the ground. Costs associated with better application technology can be high, but costs can be saved through reduction in mineral nitrogen application. 	 Decreasing surface application of manure and promoting injection techniques and mulching will immediately decrease leaching into water bodies as well prevent the exposure of manure to the surface run-off and drain flow losses. Reduced groundwater and surface water pollution from nitrate leaching and phosphate run off. Using trailing hose technology for slurry application can reduce emissions (e.g. ammonia) significantly. Trailing hose technology to apply slurry can decrease emission up to 90% when the slurry is worked into the soil within an hour of application. Reducing ammonia emissions can help to reduce acidification and eutrophication of surrounding ecosystems, including forests and water bodies. 		N/A	
169		Determining the amount of nutrients N supplied to soils during manure application helps farmers to judge the amount and ideal timing of additional fertilizers required by the crop.		 Determining the amount of nutrients supplied to soils during manure application helps farmers to judge the amount and ideal timing of additional fertilizers required by the crop. Taking better account of the nutrients contained manure can reduce the need for fertilizer inputs, which in turn minimises nitrate and phosphorus losses. Excessive application of mineral fertilizer applications is avoided, so optimum economic production level can be reached and soils can be adequately maintained. The method is most effective on farms where manure is supplemented by mineral fertilizers. Iong-term manure applications can lead to a build up of excessive soil P reserves. By integrating fertilizer and manure application, dentrification, which leads to increased levels of nitrogen oxide emissions, can be minimised as a result of proper scheduling. 	 Reduced nitrogen and phosphorus leaching can be expected from this measure, as less N and P are applied to land. 	N/A	N/A	N/A
187		Transporting excess manure to neighboring N farms		 Farms with soils that have high N rates or are located in high risk zones (close to watercourses) transport their excessive organic manures to other farms. This reduces the pressure to apply manure during high risk periods, thus restricting the nutrient load on the farm site and the risk of diffuse pollution. The input of nutrients is balanced and the land is given enough capacity to absorb the nutrients. 	 This reduces the nutrient load on the farm that has an excess of manure thereby reducing the risk of diffuse pollution. It also enables the remaining manure to be managed in a more integrated way. Cons: In the case of contaminated manure (e.g. heavy metals, pathogens) pollution might be spread. This method results in increased transportation which can be linked to potential odor emissions associated with the transport of manure and increased concerns about biosecurity. 	N/A	N/A	N/A
	Explain why nutrient management and manure management are coupled. MANURE IS AN ORGANIC SOURCE OF FERTILIZER. MANGING MANURING FROM LIVESTOCK IS ALSO KEY TO LIMITING NUTRIENT LOADING FROM LIVESTOCK FARMS.	Establishing manure management systems N	E	 Nutrient management must be coupled with manure management. This includes soil and manure testing in addition to managing the amount, source, placement and timing of nutrient application. Turkey AnatoliaWatershed Rehabilitation Project: farm-based manure storage platforms with a goal of establishing manure management systems for 10 percent of the households in the project area. The platforms are also being used for composting. In areas with limited animal numbers per farm, community-scale manure storage/handling facilities may be more economical. 		Serbia, Turckey, Moldova	Best Practices for Water Quality Protection and Replication	
224	No direct connection to nutrients MANURE SPREADER IS A TECHNOLOGY TO APPLY MANURE AS A FERTILIZER	Calibrating Manure Spreader N		 Calibrating a manure spreader to determine the actual rate of manure applied (e.g., in tons or gallons per acre) and adjusting it to obtain the desired agronomic rate for a field or group of fields. Application rate is defined as the amount of material applied per unit area of land. For manure, it is usually expressed in tons per acre (solid or semi-solid) or gallons per acre (liquid or slurry). To calibrate a manure spreader, you need reliable estimates of both amount applied and area covered. 		USA	Manure Spreader Calibration	

225	Testing is not a best practice in and of itself: needs to be	Manure Testing	Ν	 Manure testing is the process of evaluating manure nutrient content to provide specific agronomic and environmental recommendations 		USA	Manure Testing	
	combined with manure management. IT IS. SOIL HEALTH OR NUTRIEN LEVELS ARE KEY. PLEASE PROVIDE			for manure use. •Samples submitted for testing should be representative of manure as it is used/spread. •Multiple samples are generally necessary to better represent				
	MORE SPECIIFCS FROM THE PROJECT.			variability in manure characteristics. •Composite sampling is the recommended method of addressing variability in manure properties without the added cost of submitting				
				multiple samples for analysis. •Composite sampling involves collecting multiple samples from a				
				single source, thoroughly mixing this material and collecting a sub-				
227	What is the point of this treatment? NOT SURE. PLEASE RESEARCH.	Treating physical Manure	N	sample for analysis		USA	Physical Manure Treatment (Solids Separation)	
229		Treating Swing Manure	N	 When applied to manure pits inside the production facility, aluminum chloride can also reduce ammonia volatilization from the manure and reduce ambient ammonia levels in the production facility. Aluminum chloride can be added to manure in manure pits inside the production facility, settling ponds or lagoons. The aluminum chemically binds phosphorus tightly enough to reduce potential losses to surface water through runoff. This may occur on a regular basis or prior to application of manure as a fertilizer. 	 Reducing ambient ammonia levels in the rearing facility can increase weight gains and feed conversions, as well as reduce the incidence of respiratory diseases in animals and their caretakers. 	USA	Treating Swine Manure with Aluminum Chloride	
232	This background info could be included in other slurry best practices. Also, grouping slurry practices together could be useful. YES PLEASE	Separating slurry	N	 Slurry separation divides slurry into liquid and solid components. The liquid part contains lower nutrient concentration and is able to be used at the production site. The solid component is made up of high dry matter content and high nutrient concentration and can be transported to the other farms. This can either be done slowly by a weeping wall system or more quickly by mechanical separation. There are a number of different types of mechanical separators including rotary screens, roller presses, screw presses, inclined screens and vibrating screens. 			Cost Effective Measures to Minimise Nutrient Pollution	
238	Was an actual management plan developed? What did it entail? PLEASE PROVIDE MORE SPECIFICS FROM THE REPORT.	Manure Management Plan	N	Factors to be managed: •annual amount of manure •nutrient content •maximum annual limits on nutrient application •necessary minimum storage capacity for manure • required and the available areas of land keeping free not suitable areas and buffer zones along all water courses.		Austria	Recommendation on Best Available Techniques at Agro- industrial Units	
279	Same process as slurry separation: should that be included in description? YES PLEASE	Solid/Liquid Waste Separator	N	 A filtration or screening device, settling tank, settling basin, or settling channel is used to separate a portion of solids from a liquid waste stream. This practice applies where solid/liquid separation will remove solids from the liquid waste stream as a primary treatment process and allow further treatment processes to be applied such as composting and anaerobic digestion. 		USA	Conservation Practices	

296				Farmers use dairy cows' manure to improve the quality of the forage	1) The amount of nutrients imported to the form for the cows'				
				grown on the farm for their cows. By injecting manure directly into the	e diet decreased;				
				soil and feeding the improved forages to the cows instead of	2) the amount of excess nutrients in the cows' manure				
		Improving nutrient balances on dairy farms		importing grains and mineral supplements, excess nutrients in manure					
		through forage management N	0	can be controlled.	3) rates of N volatilization are greatly reduced	USA			
301					Synaces of A Volatinization are greatly reduced	0.0.1	4		t
301				white an extended on the second se					
				This measure involves cutting slots in the soils, injecting the slurry and					
				then closing these slots after application. Injecting slurry as opposed					
				to applying it to topsoil makes it possible to directly reach the active					
				soil layer in order to reduce nutrient leaching. The injection of slurry	Decreasing surface application of manure and promoting				
				effectively increases the utilization of manure nutrients compared	injection techniques and mulching will immediately decrease				
				with surface application, thus reducing potential run-off and need for	leaching into water bodies as well prevent the exposure of				
		Application techniques of manure N		more application.	manure to the surface run-off and drain flow losses.	Germany			
302									1
502				By avoiding the spreading of mineral fertilizers or manure at high risk			4		
				times, the nitrate leaching and loss of phosphorus through surface rur			4		
							4		
				off is diminished. High risk times include when there is a high risk of			4		
l				surface flow, rapid movement to field drains from wet soils or when			4		
1				there is little or not crop uptake. Additionally, a way to avoid leaching			4		
1				in the winter due to rainfall is to apply nitrogen in the autumn. (This			4	1	
		Avoiding spreading fertilizer and manure at		practice generally requires increasing the capacity of manure storage	Estimates expect a reduction of the P baseline losses of 50% on		4		
l		high risk times N		facilities.)	the sandy loam and 20% on clay loam soil.	Europe	4		
303							1	1	
							4		1
				(This method is most effective against losses of phosphorus where the					
				primary mechanism of transport is surface run-off.) Never applying			4		
				mineral fertilizers and manure to high risk areas helps to prevent run-	A reduction or complete avoidance of manure application in		4		
				off of nitrate and phosphorus in the watercourses. Risk areas include	such areas reduces the risk of manure or fertiliser draining into				
				areas with flushes draining to a nearby watercourse, cracked soils ove			4	1	1
		Avoiding spreading fertilizers and manure		field drain or fields with high phosphorus number. To determine	groundwater. Furthermore, the method also allows for a		4		1
1		in high risk areas		Phosphorus risk areas, a risk index or specific risk factors can be used.		Europa	4		
333	Good example of expliciting	III IIgii IISK areas N		Phosphorus risk areas, a risk index of specific risk factors can be used.		curope	4	+	łł
222					This reduces the nutrient load on the farm that has an excess of		4	1	1
	stating impact of best practice				manure thereby reducing the risk of diffuse pollution. It also		4		1
1	on local nutrient load. YES	Transporting excess manure to		Farms with manure surpluses can avoid the need to increase storage	enables the remaining manure to be managed in a more		4		
		neighbouring farms N		capacity be exporting the surplus to neighbouring farmland	integrated way.	Europe	4		
24	Same as 21	Maximizing use of nutrients by plants O				Macedonia/Alba	Prespa Lake Integrated	\$13,140,000	
						nia	Ecosystem Management.		
							Intervention 2: Reducing		
							Environmental		
							Impacts of Agriculture		
							impacts of Agriculture		
34		Investigating nutrient and pesticide O				All Danube River	DRP Small Grants 1.2/1.3	N/A	
		management practices				Basin	(Agriculture)		
		management practices				Cosin	(ignediture)		
43		Using nutrient models to estimate O		 Nutrient models were used to estimate pathways and emiisions from 	•Nutrient models have the potential to provide projects with a	Danube River	DRP	N/A	
								1775	
1		pathways and emissions of nutrients from		point, diffuse and atmospheric sources.	harmonised approach to estimating nutrient loads and to review	вазіп			
1		point, diffuse and atmospheric sources		 MONERIS nutrient model was adapted to the Danube river Basin. 	different management scenarios for nutrient reduction.		1	1	1
1				This approach allowed historical estimates to be calculated providing			1	1	1
				options to establish baseline values in the absence of direct			1	1	
1				monitoring data.		1			1
1				•Model needed extensive data sets (in particular land use and terrain		1			1
1				data from remote monitoring)		1			
113	No best practice associated with	Measuring carbon levels in lake pre- O		Measurements of carbon dioxide from the Chilika Lake were taken	•Carbon dioxide efflux during the monsoon season was very	India	Ecosystem Modeling for	+	N/A
112					high	inula	Chilika Lake		14/74
	this study, just data about	monsoon and during monsoon season.		pre-monsoon and during the monsoon season	nign.		Chinika Lake	1	1
l l			1 1		 Carbon dioxide transported to the lake via river represented 	1	1	1	1
	carbon content. WERE THERE								
	carbon content. WERE THERE ANY PRACTICES RELATED				only 15 % of the total efflux from the lake.				1
					only 15 % of the total efflux from the lake. •Remaining carbon dioxide production is derived from trapped				
					•Remaining carbon dioxide production is derived from trapped				

405		hand the state of the state of the state of the	- <u>-</u>				total and a state of	1	
135	Should modeling projects be presented separately from best	Modeling Nutrient Management in Tropical O Cropping Systems				Cenya, Cimbabwe,	Integrated nutrient management in tropical		N/A
	presented separately from best practices? NO MODELING IS A	Cropping Systems		• Agricultural Production Systems Simulator (APSIM) was selected		imbabwe, Colombia, and	cropping systems: improved		
	PRACTICE			•Agricultural Production Systems Simulator (APSIV) was selected because of its use in tropical soil and crop management.		outheast Asia	capabilities in modeling and		
	PRACTICE			•The model provides a framework necessary for simulating the effects	3	outriedst Asid	recommendations (Project no.		
				of diverse organic inputs on cropping systems found in tropical			LWR2/1999/003) funded by:		
				regions.			The Australian Centre for		
				 Tested and verified models can be a valuable tool in focusing 			International Agricultural		
				research and ultimately making recommendations for crop and soil			Research (ACIAR)		
				management.			Research (AciAlly		
				•For inorganic fertilizer additions, there are still gaps in the ability to					
				simulate short and long term effects of additions of different organic					
				N and organic and inorganic P resources.					
				•The improved management of soil fertility needs to be evaluated					
				from economic, social, and environmental perspectives.					
				· · · · · · · · · · · · · · · · · · ·					
159		Catch crops O				I/A	N/A		N/A
				by increasing nutrient uptake and reducing surface run-off and soil nutrier					
					ch crops can also improve the soil structure and increase the				
1			1		unt of organic matter in the soil.				
1					nt cover in winter protects the topsoil of the fields against				
			1		erosive forces of rain, melt and runoff waters during winters.				
			1 1	nitrate leaching. This als	also reduces soil erosion into waters.				
171	++	Introducing nitrogen taxation to create O	0	Introduction of nitrogen taxation creates financial incentives for •By rec	reducing nitrogen application, eutrophication and excessive	I/A	N/A		
1/1		financial incentives for farmers to reduce	ч.	-	reducing nitrogen application, eutrophication and excessive in I growths that results from N leaching can be minimised or	1/A	N/ A		
		nitrogen application		•This measure is limited in its application and its effectiveness avoide					
		nitrogen application			ued. bundwater (used for drinking water supplies) contamination				
					Iting from high nitrate content can also be minimised or				
			1	farms produce enough products to offset increasing costs of resultin fertilizers). avoide					
190	++	Mitigating nutrient loads to water bodies O		,		Croatia	Agricultural Pollution Control		\$20,000,000
150		from point-source pollution			hers' application of remedial nutrient-reduction measures;	louid	, greatarai i onation control		20,000,000
		· · · · · · · · · · · · · · · · · · ·			roduction to EU principles of project financing and measures				
					cure funding from nonbank resources;				
					ablishment of a programme of day-to-day information visits				
					roducers — more than 1,200 thus far;				
					noring of international Danube Basin and Black Sea				
					ection conventions.				
				 cooperation was established with the local community for education 					
				and information efforts of the farmers;					
				 work was done to help poultry producers in Varaždin counties; 					
				 joint educational activities were carried out with the the energy 					
				institute Hrvoje Požar;					
			1	•cooperation was established with two agriculture high schools in					
			1	project counties, including a joint initiative between APCP, a local					
			1	community and a commercial bank to help APCP applicants complete					
			1	on farm investments;					
1			1	 a water analysis programme began in the pilot counties); 					
				• Dissemination of the Code of Good Agriculture Practice (85,000					
1			1	copies of a brochure were distributed to producers;					
1			1	 20 types of educational and promotional materials — 82,000 pieces 					
220	++	Dharaharria Dalaraa		in all were distributed	- stands along the standard standard state of the first	10.4	Dhaashasus Dalassa		
226		Phosphorus Balance O			s simple classification can be used as a starting point for	JSA	Phosphorus Balance		
					ssing the nutrient balance for an operation and for helping				
					etermine the need for a more detailed P balance				
			1	Phosphorus balance is determined by the managed material/nutrient assessments the second within a field on animal facility or form	ssment.				
1			1	transfers to, from and within a field, an animal facility or farm.					
1			1	• If the flow of P in exceeds the flow of P out, a positive P imbalance					
1			1	will occur and nutrients will be accumulating in that component of the					
1			1	system, contributing to the source of P. This accumulation will often					
			1	be indicated by excessive soil test levels in the farm fields.					
			1	 For a farm that specializes in animal production, overall farm balance 					
				can be roughly estimated based on animal density or external feed					
				can be roughly estimated based on animal density or external feed					

224	Management of the second se				1104			
231	Vegetative Mining O Managing nutrient application O		 Phosphorus is removed from the soil by removing crop biomass from a site. On sites where high or very high soil test phosphorus values limit or restrict the continued application of fertilizer or manure phosphorus, strategy of vegetative mining can help to draw down the soil test phosphorus. With the removal of greater quantities of a crop from a field, more phosphorus is removed, increasing the impact of vegetative mining on the soil test phosphorus. The amount, source, placement, form and timing of the application of plant nutrients and soil amendments are managed. A nutrient budget for nitrogen, phosphorus, and potassium is developed, considering all potential sources of nutrients including, but not limited to animal manure and organic by-products, waste water, commercial fertilizer, crop residues, legume credits, and irrigation water. 		USA USA	Vegetative Mining Conservation Practices		
13 Too general: what were the practices and how was the training executed? IT IS PART OF A PILOT PROJECT WE MANAGED. I CAN SEND YOU DETAILS.	Training farmers to implement organic P I agriculture practices	J	 water. Realistic yield goals are established based on soil productivity information, historical yield data, climatic conditions, level of management and/or local research on similar soil, cropping systems, and soil and manure/organic by-products tests. •25 farmers were informed and trained in nonpolluting agricultural practices. • Farmers, youth, students and other categories of citizens and agricultural terrains owners were involved in rehabilitation and changing for better the environment. 		Moldova	Danube Regional Project (DRP) Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	\$10,000	
164	Converting from conventional to organic P production		 Nutrient input in organic production aims at promoting and maintaining soil fertility rather than crop yield. Organic production aims at closed nutrient cycles. Nutrient use efficiency is regularly higher and nutrient losses to the environment lower than in conventional production. Organic farming is expected to reduce risk of N and P losses to the environment, including water bodies. Eutrophication risk is reduced in nearby water systems. 	• Current organic farming area in the Baltic Sea drainage basin would reduce Nitrogen input in the region by 2.3% and 1.8% for Phosphorus.	N/A	N/A		Converting an orchard costs £6,000/ha, spread over three years. While a grower's income initially decreased during conversion, about a £5850/hectare decrease over three years. With respect to establishing new orchards, costs vary with respect to fruit grown and are estimated between £3,700-£13,500/ha, which is about twice as much as
27	Conversion from conventional to organic production P Prohibiting the use of herbicides and arboricides for ditch maintenance of drainage systems		Converting to organic production in order to close nutrient cycles.	Organic farming is expected to reduce risk of N and P losses to the environment, including water bodies. Eutrophication risk is reduced in nearby water systems. For example, organic farming in the Baltic Sea has shown to reduce nutrient and pesticide loads in the drainage basin of the Baltic Sea. Paulsen et al (2002) found that the current organic farming area in the Baltic Sea drainage basin would reduce Nitrogen input in the region by 2.3% and 1.8% for Phosphorus.	Europe Estonia, Russia	Development and Implementation of the Lake Peipsi/Chudskoe Basin Management Program	\$4,770,000	establishing a conventional orchard.

[1	- · · · · · · · · · · · · · · · · · · ·								
48		Developing affordable standards municipal wastewater	s for Q		 A water quality management plan was developed to be used as a guide for future water management decisions A joint Bosina/Croatian Commission was developed with coordination from Montegro to implement the plan high priority, low cost water capital investments in sewage treatment were developed and implemented to accompany the IDA operation. 	Project water quality was improved to meet EU requirements	Bosnia and Herzegovina	Water Quality Protection Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$20,270,000	
124	This needs a direct link to nutrients. SOIL EROSION AND SOIL HEALTH ARE THE LINK.	Integrating insights from ecologi socio-economic theory into wate management			 Insights from ecological and socio-economic theory which focuses or the ecological underpinnings of watershed management, developing the concepts of scales, lateral flows, and externalities were integrated The role of government, non-governmental, and research organizations in watershed management was discussed. Presumptions involved with policy making are: fallacies of watershed and catchment management; plot level soil erosion rates being used to calculate gross erosion for the watershed, erole of soil erosion from minor uses, time frame for soil to move from upper areas of the watershed to streams, seasonal water shortages caused by trees catchments boundaries used for planning purposes. 	watershed project bringing together local policy makers,	Kenya and Indonesia	N/A		N/A
162	No explanation on how reducing water use affects nutrient loading. IS THERE MORE INFORMATION	Charging for water abstraction	Q		 Charging for ground and surface water abstraction creates an incentive for farmers to reduce water use. 	 Water abstraction charges would reduce the amount of water taken out of ground or surface waters, thus reducing the adverse effects of abstraction on the hydrological regime (e.g. aquatic ecology due to changes in flow regimes). 	N/A	N/A		N/A
173		Nutrients trading scheme: alloca total amount of pollutants that e water body			 Nutrient trading is a way of allocating the total amount of pollutants that enter a water body. These trades can take place among point sources; between point and nonpoint sources; or, among nonpoint point sources. 	Potential reduction in eutrophication risks in areas with less nutrient input.	N/A	N/A		N/A
240		Nutrient Trading; Water Quality	Trading Q		Water quality trading: •Farmers receive financial rewards for implementing conservation measures on their farms. •Industrial wastewater treatment plants buy credits generated from these measures to meet their NPDES permit regulatory requirements.	 Treatment plants find it less expensive to pay agricultural producers to implement conservation practices than to upgrade or install new technologies at their plants Producers get rewarded for their efforts The environment benefits in multiple ways including water quality, wildlife habitat, and carbon sequestration. 	USA	Nutrient Credit Tradinga Market-based Approach for Improving Water Quality		
308	No direct connection to nutrients SAME	Charge for water abstraction	Q	G	Charging for ground and surface water abstraction creates an incentive for farmers to reduce water use.	In some countries there is no charge to abstract water (e.g. Austria). Such a charge would reduce the amount of water taken out of ground or surface waters, thus reducing the adverse effects of abstraction on the hydrological regime (e.g. aquatic ecology due to changes in flow regimes).	Europe			
317		N-Tax	Q	G	Introduction of nitrogen taxation creates financial incentives for farmers to reduce nitrogen application. This measure is limited in its application and its effectiveness depends on the increase in costs and the size of the farm (very large farms produce enough products to offset increasing costs of fertilizers).	avoided. Additionally, groundwater (used for drinking water supplies) contamination resulting from high nitrate content can also be minimised or avoided.	Europe			
327	Example of statement linking decreased water usage to nutrients MORE SPECIFICS FROM REPORT	Replacing volumetric pricing wit hectare water charges	h per Q	G	Rodriguez Díaz JA (2004) show that irrigation districts with volumetric (i.e. two-apart tariff) systems in the Guadalquivir basin consume on average 10 to 20% less than irrigation districts with flat rate pricing, thus the negative effects.	Reducing water consumption to only necessary levels reduces runoff and nutrient loss.	Europe			
331	No direct connection to nutrients AGAIN EROSION IS A CONNECTION	Soil Erosion plans	Q	l	By devising national or regional soil erosion plans, activities centred around reducing soil erosion can be streamlined and more effective. Currently a small number of MS are planning to come up with such plans to mitigate environmental issues, for example desertification.		Europe			
10		Safely reusing resources (nutrier Safely reusing resources (nutrier water) for agriculture	nts and R		 Information dissemination and knowledge building was conducted on composting and the safe re-use of nutrients and water in project communities. 		Bulgaria	Developing a Model for Sustainable Water and Waste Management for Rural Areas in Bulgaria	N/A	

19		Safely reusing resources (nutrients and water) for agriculture	R		roduction efficiency was improved through cost-effective outs and better farm management.	Romania	Agricultural Pollution Control Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$11,100,000	
230	No direct connection to nutrients - COLLECTION OF RUNOFF IS THE CONNECTION	Tailwater Recovery	RU	 A system was planned to collect, store and transport irrigation tailwater for re-use. Runoff from irrigated land is collected, conveyed, stored and reused. This system normally includes a combination of practices and equipment that collect, convey, store and recycle irrigation runoff water for re-use. Common components include pickup ditches, sumps, pits, pumps and pipelines. 		USA	Tailwater Recovery		
237	No direct connection to nutrients - CONNECTION TO FERTILIZER USE	Reusing Straw	R	 Every year, about 1 million mt of straw is left on the farmland in Shanghai and finally enters the water environment. Straw treatment/reuse technology prevents straw from being put into the rivers or being burnt and returns straw directly to farmland and to reduce the utilization of chemical fertilizers and pesticides. 		China	Shanghai Agricultural and Non- Point Pollution Reduction Project (SANPR)		
178		Reducing the area under autumn plowing in regions susceptible to soil erosion	S	stubble during autumn and winter - covering drainage ways with thu vegetation using catch crops.	y reducing soil erosion, natural soil fertilitiy is maintained, us reducing the need for fertiliser application. eduction in sedimentation and posible reduction in trophication if fertiliser application rates are reduced.	N/A	N/A		N/A
260	No direct connection to nutrients LOW TILLAGE LIMITS SOIL DISTURBANCE AND KEEPS NUTRIENTS ON THE FIELD, BUILDS UP ORGANIC MATTER.	Performing tillage operations below normal tillage depth to modify adverse physical or chemical properties of a soil (Deep Tillage)	S	 Tillage operations are performed below the normal tillage depth to modify adverse physical or chemical properties of a soil. 		USA	Conservation Practices		
266	No direct connection to nutrients	Grazing Land Mechanical Treatment	S	 Physical soil and/or plant conditions are modified with mechanical tools by treatments such as pitting, contour furrowing, and chiseling, ripping or subsoiling. Mechanical treatments such as contour furrowing, pitting, chiseling, ripping, or subsoiling are applied to accomplish the desired objectives and address the natural resource concerns. Treatments are limited to soils and slopes where surface disturbances will not result in unacceptable levels of soil erosion and/or sedimentation. 		USA	Conservation Practices		
312	Good example of expliciting stating impact of best practice on local nutrient load.	Erosion-minimising cultivation systems	S	Using discs or tines to cultivate the soil or direct drill into stubbles (no- till) will maintain organic matter and preserve good soil structure. However, this measure is not suitable for all soil types, e.g. sandy soils, already compacted soil, and certain crops such as potatoes. The best soils for minimal cultivation systems include clays, silty clay loams or alse	on-ploughing reduces sedimentation and nutrient run-off, as ell as soil compaction. This will also improve infiltration and tention of water and thereby decrease total phosphorus ncentrations in surface run-off. Furthermore, crop residues nit evaporation, thus retaining water for crop growth. It can so reduce energy consumption and soil compaction from iffic.	Europe			

5	Should international networks be separated out from best practices since they aren't implementable at the local level? NO. IT IS A PRACTICE	Establishing a network for project T sustainability	•An international platform and network connecting governments, scientific institutions, agricultural extension services and NGOs was established to facilitate continued cooperation and the development of follow-up projects.	Liti Po Ru	stonia, Latvia, thuania, Joland, and the ussian ederation	The Baltic Sea Regional Project, Tranche 1	\$12,450,000	
6		Dedicating teams for outreach to farmers T	 A local project implementation team was established and to work with farms in implementing agro-environmental investments. The project facilitated pro-environment works and development of local eco-tourism under the coastal zone management activities 	development and income generation. Litl • The increased employment, in turn, is expected to have a positive impact on poverty, particularly in rural areas. Ru	stonia, Latvia, thuania, oland, and the ussian ederation	The Baltic Sea Regional Project, Tranche 1	\$12,450,000	
45	No info for practice. MORE SPECIFICS FROM THE PROJECT	Providing advisory assistance and helping T farmers access funding to construct manure platforms and storage tanks		Po	oland	Rural Environmental Protection Project (REPP)	\$14,400,000	
52		Publishing good agricultural practices T brochure	 A national sustainable land management strategy was developed An educational programme and masters programme on sustainable land management was developed Two editions of the brochure were produced, and 5,000 copies distributed to stakeholders 	Bu	ulgaria	Capacity Building for Sustainable Land Management (SLM) in Bulgaria	N/A	
53		Training government experts T	•Over 250 experts from regional inspectorates and the National Agricultural Advisory Service were trained during the project.	Bu	ulgaria	Capacity Building for Sustainable Land Management (SLM) in Bulgaria	N/A	
63	How was the community involved? THIS IS FINE	Involving the community in rehabilitation of T ecosystems.	 Farmers, children, students, the general public and agricultural landowners were involved in environment rehabilitation activities. 		anube River asin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
64	64-73 all identical	Community partnerships T	Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils.	The achievements serve as an example for other communities. Da Ba	asin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
65	64-73 all identical	Community partnerships T	 Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils. 	The achievements serve as an example for other communities. Da Ba	asin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
66	64-73 all identical	Community partnerships T	 Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils. 	The achievements serve as an example for other communities. Da Ba	asin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
67	64-73 all identical	Community partnerships T	 Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils. 	The achievements serve as an example for other communities. Da Ba	asin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	

68	64-73 all identical	Community partnerships T	ſ	Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils.	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
69	64-73 all identical	Community partnerships T	r	 Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils. 	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
70	64-73 all identical	Community partnerships T	r	Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils.	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
71	64-73 all identical	Community partnerships T	r	Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils.	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
72	64-73 all identical	Community partnerships T	r	 Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils. 	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
73	64-73 all identical	Community partnerships T	r	Project activities were implemented in partnership with local authorities, farmers and environmental NGOs Greater responsibility was given to farmers, agricultural landowners, the general public and local councils.	The achievements serve as an example for other communities.	Danube River Basin	DRP Small Grants: The reduction of nutrient pollution in the Danube Basin through the promotion and use of good agricultural practices	N/A	
98		Community based banana management T and group marketing	r	 Bananas are grown as a monoculture in the most fertile soils. Pseudo-stems were chopped to control banana weevil. Pseudostems were mulched and applied as crop residues. Random planted trees offered support for banana trees. Application of manure increased bunch size. Beans, pumpkins, and other short term crops were intercropped with bananas. Rainwater was harvested. Banana marketing groups were formed. 	 Better bargaining power was achieved Less time spent in marketing Wealth was uniformly distributed in the community. 	Uganda	Transboundary Agro- ecosystem Management Programme for the Lower Kagera River Basin		
99		Introducing mixed farming in traditional T pastoral communities	r	 Agroforestry was expanded. Fishponds were introduced. Improved livestock breeds were introduced. Individual and community agroforestry nurseries were introduced. Bee keeping was introduced. Mudfish were grown in Lake Victoria. 	•Water runoff was reduced and erosion was controlled. •Silt was kept out of water bodies. •Water quality of community water supply improved.	Uganda	Transboundary Agro- ecosystem Management Programme for the Lower Kagera River Basin		
126		Managing ecosystem services, nutrient T cycles, below-ground biodiversity, and empowering farmers through long term management experiments	r	 Pearl millet yields in Sahelian soils can be increased by applying P, N, manure, and crop residue to the soil following a cowpea crop. Advantages were presented to combine organic and inorganic plant nutrients. Many long-term management trials were established to evaluate P, N, crop residue, soil tillage, and crop rotation on the yields of local crops. 	•Rice yields improved with high rates of urea application, 90-120 kg N, doubling the control yields. • Placement of P fertilizer increased P use efficiency. •Large yield increases were found when P, as single superphosphate, tahoua phosphate rock, kodjari phosphate rock, or manure) was placed directly into the hill.	Burkina Faso, Cote d'Ivoire, Ghana, Mali, Niger, Nigeria, Togo, Tanzania, Zimbabwe, Zambia, and Kenya	Tropical Soil Biology and Fertility Institute of CIAT		N/A
233		Systematic On-Farm Individual Advice T	r	 Agri-environmental measures are implemented by close co- operation between farmers and advisors. Advisory services can lead to reducing stocking density, crop coverage over winter, intercropping, fixed value for nitrogen utilization of farm manure, limited nutrient budget, fertilizer plans and nutrient balances. 			Cost Effective Measures to Minimise Nutrient Pollution		

270	No direct connection to	Employing IPM strategies (Prevention, T	A site-specific combination of pest prevention, pest avoidance, pest	USA	Conservation Practices		
	nutrients AGREED.	Avoidance, Monitoring and Suppression or	monitoring, and pest suppression strategies are employed to prevent				
		"PAMS") to prevent or mitigate pest	or mitigate pest management risks for identified natural resource				
		management risks for identified natural	concerns.				
		resource concerns. (Integrated Pest					
292		Management)					
232							
			Computerized nitrogen index developed for farmers to determine				
			whether they are over- or under-applying nitrogen and how much soil				
			fertility they are losing. This is calculated based on information the				
		Nitrogen Index: Adapted for Forage	farmers enter into the computerized index regarding their normal				
207		Production in Mexico T	 practices, the amount of rainfall, the type of crops, etc. Farmers were given access to this tool.	Mexico			
297							
			On average, use of Nutrient Expert recommendations chieve	ed Central Lampur	g		
		Use of Nutrient Expert, a decision suport	higher yields with less fertilizer. This normally happened the	ough and North	-		
		tool, increased profitability of maize	Maize farmers in Indonesia were encouraged to use a software tool the use of improved timing, generally by increasing the number of the second				
299	++	production T	 called "Nutrient Expert" to consult them on their nutrient applications.	Indonesia			
233			Sugarcane producers in environmentally sensitive areas were given a				
			nutrient management tool that enables adoption of best management				
			practices based on six steps: 1) knowing and understanding your soils;				
			2) understanding and managing nutrient processes and losses; 3)				
		Nutrient management plans for sugarcane	regular soil testing; 4) adopting soil-specific nutrient management guidelines; 5) checking on the adequacy of nutrient inputs; 6) keeping and nutrient loading in the coastal plains of eastern Austra				
		in Australia's wet tropics	good records to modify nutrient inputs when and where necessary (along the Great Barrier Reef) was reduced.	Australia			
318	1	in Australia 3 wet tropies					
			Nutrient balances inform farmers on the efficiency of nutrient Creating a nutrient balance spread sheet helps to accurate willesting a nutrient balance spread sheet helps to accurate				
			utilization and help to identify the cropping phases in which nutrients account for fertilizer use to decrease application, which he are lost. Accurate fertilizer application, which is based on the crop				
			type, its yield and the characteristics of the parcel to the economic eutrophication levels, excessive algal growths, and ground	ater			
			optimum, will ensure that the necessary quantities of the essential contamination. It also maximises efficient use of nutrients				
			crop nutrients are only available when required for uptake by the already in the soil by ensuring that the soil is in a sufficient	,			
7	+	Nutrient Balances T	crop. fertile state.	Europe	Developing a Madel fee	N/A	
/		Diverting urine and installing low flush U V toilets to remove nutrients, bacteria, and	 Pilot new technologies such urine-diverting toilets, planted soil filters and small-scale constructed wetlands were introduced to meet the 	Bulgaria	Developing a Model for Sustainable Water and Waste	IN/A	
		viruses from excreta from the water cycle.	requirements of the EU Urban Waste Water Treatment Directive.		Management for Rural Areas		
			•These technologies allowed for the removal of nutrients, bacteria,		in Bulgaria		
			viruses and eggs from excreta.		Ū.		
			•The ecosan system in the cultural centre consists of 2 UDD toilets, 2				
			urinals, hand-washing facility; soil filter; experimental garden for urine				
1			application.				
11		Treating and aerating municipal U	Aeration tanks were implemented and operated to reduce nutrient Improved water quality and decreased risk of pollution a	700 Hungary	Hungary — Reduction of	\$32,350,000	
1-1		wastewater	discharges (nitrogen and phosphorous) from Budapest into the potable water wells producing 1.2 million cubic meters of		Nutrient Discharges	+,-30,000	
			Danube River, and consequently into the Black Sea. drinking water daily		Ū.		
1							
31		Designing and restoring drainage systems U V		Estonia, Russia	Development and	\$4,770,000	
				cotoma, nassia	Implementation of the Lake	÷.,	
					Peipsi/Chudskoe Basin		
					Management Program		
46		Reducing discharges of untreated U	A joint Bosnia and Herzegovina/Croatia working group was Nutrient loads from untreated wastewater was reduced.	Bosnia and	Water Quality Protection	\$20,270,000	
		wastewater	established with coordination from Montenegro and Serbia to •Environmental conditions in the country improved	Herzegovina	Project - under WB-GEF		
1			implement the plan •International conventions for the protection of the Danub	1	Strategic Partnership for		
			Information was disseminated in the region was for the replication basin and Black Sea were honored.		Nutrient Reduction in the		
1			of project activities at other priority sites in the Balkans		Danube River and Black Sea		
1							
I							

47		Developing Wastewater Improvement Plan	U			Bosnia and Herzegovina	Water Quality Protection Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$20,270,000	
49		Monitoring wastewater quality	U			Bosnia and Herzegovina	Water Quality Protection Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the	\$20,270,000	
104	Should monitoring and data collection projects be separate? This does not suggest any sort of action. IT IS A PRACTICE	Water quality monitoring	U	•23 water sampling stations were set up throughout Chilika Lake. •Surface water for sampling was collected from undisturbed waters. •Water quality parameters monitored included: pH, salinity, dissolved oxygen (DO), biochemical oxygen demand (BOD), primary productivity (PP), nutrients (ammonia, nitrite, nitrate, phosphate, and total P), and chlorophyll.	the increase of pH, high photosynthetic activity, high nutrients,	India	Donube Biver and Black Sea N/A		N/A
115	Should monitoring and data collection projects be separate? This does not suggest any sort of action.	Water quality monitoring	U	 8 water sampling stations were set-up throughout the entire Chilika Lake. Two stations were established in each of four sectors of the lake. Surface water was collected from undisturbed waters. Water quality parameters monitored included: temperature, pH, salinity, conductivity, dissolved oxygen (DO), biochemical oxygen demand (BOD), alkalinity, nutrients (nitrite, nitrate, phosphate, and silicate), depth, transparency, and turbidity. 	 High nitrate concentrations during July and August were related to agricultural runoff through floodwater. Nitrate concentrations ranged from 0.105 to 5.321 micro-mol/L throughout the sampling duration. Nitrite showed higher concentrations in May due to its release from decomposed freshwater weeds. Phosphate concentrations ranged from 0.090 to 0.897 micro- mol/L throughout the sampling duration. The highest concentration was observed July. The concentration init of phosphate was below the pollution 	India	N/A		N/A
116	Should monitoring and data collection projects be separate? This does not suggest any sort of action.	Water quality monitoring	U	 16 water sampling stations were set-up covering three sectors of Chilika Lake. Surface water was collected from undisturbed waters. Water quality parameters monitored included: color odor, total dissolved solid, floating materials, suspended materials, temperature, pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand, chlorine content, salinity, nitrate, phosphate, and silicate. 	 Nitrate concentrations were found to range from 1.55 to 117.4 micro-mol/L pre monsoon and from 19.48 to 96.21 micro-mol/L in monsoon season and from 10.46 to 94.65 micro-mol/L post monsoon. The observed nitrate concentrations were much below the WHO upper limit. Phosphate concentrations were found to range from 0.17 to 1.035 micro-mol/L pre monsoon and from 0.855 to 5.4 micro-mol/L in monsoon season and from 0.19 to 3.54 micro-mol/L post monsoon. 	India	N/A		N/A
117	Should monitoring and data collection projects be separate? This does not suggest any sort of action.	Water quality monitoring	U	 3 water sampling stations were set-up covering three sectors of the western mangroves of Kachchh-Gujarat. Surface water was collected from undisturbed waters every month for two years. Water quality parameters monitored included: sediment (for texture analysis), temperature, dissolved oxygen (DO), nitrate, nitrite, phosphate, silicate, and organic carbon. 	Nitrite concentrations ranged from 0.04 to 0.87 micro-mol/L while nitrate concentration ranged from 0.23 to 7.26 micro-mol/L. Phosphate concentrations ranged from 0.13 to 3.12 micro -	India	N/A		N/A
128		Managing catchment in high runoff risk locations	U	 Locations with high runoff risk were identified. Catchment areas were managed. 	•Stream waters that move through a retention area can reduce N concentration by 50%.	N/A	N/A		N/A
133	How is village wastewater treated? THIS SHOULD BE ATTACHED TO A PRACTICE FROM CENTRAL AND EASTERN EUROPE	Treating village wastewater	U	 Ni ni human wastewater can be as high as 100 milligram/L. If not controlled and cared for properly, wastewater can cause severe health risks. Modern septic tank technology does not remove N. Wastewater must be treated prior to disposal or reuse. Wastewater management concerns for villages include disease, system failure, N, cost, and longevity. 		N/A	N/A		N/A

163		М	lanaging Drainage Water	U		•The transport of nitrogen from drained fields can be minimized by	Drainage control reduced the annual transport of total nitrogen	N/A	N/A	N/A
						managing the drainage system such that only the minimum drainage water necessary is allowed to exit the field. • Controlled subsurface drainage intensifies the drainage systems so that drainage waters from the arable areas can be efficiently utilized by the plants. • The runoff of drainage waters is controlled and they are recirculated back to the arable area for irrigation.	at the field edge by 9 lbs. acre-1 year-1 or 45% on average.			
180			emoving the direct linkage between rainage systems and watersheds.	U N		 Drainage of agricultural land using surface ditches or sub-surface tile drains changes hydrological flow paths and rates. Concentration of flow via agricultural drainage may lead to accelerated runoff rates. This in turn may cause an increased risk of flooding. Conversely, a general lowering of the water-table can increase soil infiltration capacity which will tend to reduce the frequency of storm runoff. Occasionally, reductions in peak flows have been observed following drainage activities 	impact on water quality through changes in the transport of nutrients such as N and P. •By utilizing this measure, runoff and risks of flooding can be minimised.	N/A	N/A	N/A
188	Same as 180	th	sing transverse collector drains to slow he flow of water from down-slope rainage networks	U N	/			N/A	N/A	N/A
203			tilizing hydrodynamic structures to nprove storm water quality	U N	1	 Devices were designed to improve quality of stormwater using features such as swirl concentrators, grit chambers, oil barriers, baffles, micropools, and absorbent pads that are designed to remove sediments, nutrients, metals, organic chemicals, or oil and grease fron urban runoff. 	h	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed	
206			reating storm water runoff through ioretention	U		 An excavated pit is backfilled with engineered media, topsoil, mulch, and vegetation. These are planting areas installed in shallow basins in which the storm water runoff is temporarily ponded and then treated by filtering through the bed components, and through biological and biochemical reactions within the soil matrix and around the root zones of the plants. 		USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed	
207		ru th	ermeable Pavement and Pavers: reducing unoff volume and treating water quality urough infiltration and filtration leechanisms	U N		 Pavement or pavers reduce runoff volume and treat water quality through both infiltration and filtration mechanisms. Water filters through open voids in the pavement surface to a washed gravel subsurface storage reservoir, where it is then slowly infiltrated into the underlying soils or exits via an underdrain. 		USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed	
209	How does this affect nutrient content of water? THE MEDIA FILTERS THE NUTRIENTS FROM REACHING THE WATER. THIS IS UKELY PART OF A WETLANDS CONSTRUCTION SYSTEM		Itering runoff through sand or organic edia	U N		 Filters capture and treat runoff by filtering through a sand or organic media. 		USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed	
243	How do these processes reduce nutrient content? THIS IS LIKELY WASTEWATER.	ca	ecentralized Nutrient Reduction: mixing apability to simulate varying waste onditions, optimizing waste to energy rocess	U		 Mixing capability to simulate varying waste conditions. Solid recovery module: A centrifuge with a hydraulically driven scroll motor will remove moisture and will prepare feed stock entering the gasifier. Casification of waste will be performed and gas measurements will be made to quantify, characterize and optimize this waste to energy process. 		USA		
261			lanaging discharge from agricultural rainage systems	U		 water discharges from surface and/or subsurface agricultural drainage systems is managed. 		USA	Conservation Practices	

-								
277	No direct connection to nutrients. THIS IS RELATED TO STORM WATER	Roof Runoff Structure L	u V	 Structures that collect, control, and transport precipitation from roofs are constructed. The minimum design capacity for roof runoff structures is a 10-year storm frequency. 5-minute rainfall precipitation event, except where excluding roof runoff from manure management facilities. In that case, a 25-year frequency, 5-minute precipitation event shall be used to design roof runoff structures. When gutters are used, the capacity of the downspout(s) must equal or exceed the gutter flow rate. 	USA	Conservation Practices		
280		Controlling storm water runoff L	U	 The quantity and quality of stormwater runoff are controlled. This practice applies to sites where stormwater runoff causes or may cause undesirable downstream flooding, sedimentation or channel degradation and/or degradation of surface or ground water quality if left untreated. This practice may apply both to sites undergoing development as well as remedial work on already developed sites. 	USA	Conservation Practices		
44		Reconnecting wetlands and floodplains to V enhance ecosystem quality	v	 Wetlands offer natural means to retain nutrients, mitigate floods and improve ecosystem biodiversity. Reconnection of wetlands and floodplains is being investigated in Tisza River Basin and the results are linked to the development of an integrated river basing managment plan. Three demonstration projects investigated different aspects of wetlands / floodplains and their contribution to improved water quality and reduced impacts from floods 	Ukraine, Slovakia, Hungary, Romania, and Serbia	Establishment of a Basin Management Framework for the Integrated Management of the Tisza Transboundary River (Tisza MSP)	\$1,950,000	
80		Wetland Stormwater Treatment Areas (STA)	v	 Large wetlands are constructed to reduce downstream phosphorus load by retaining phosphorus in soils and biomass of the wetland. Four Stormwater Treatment Areas (STA) are designed to treat waters flowing from the Everglades Agricultural area. Three employ Submerged Aquatic Vegetation (SAV) technology to enhance P uptake. 	USA	Long-Term Plan for Achieving Water Quality Goals		\$132,855,555
102	No direct connection to	Dredging of an artificial mouth for the	v	An inlet was dredged in Chilika lake. A large improvement in the exchange of water between the set	a India	Chilika Development Authority		N/A
103	nutrients AGREED.	Chilika Lake Catchment area treatment V	v	and the lagoon has been observed.	India	at Magarmukh Integrated Sustainable Environmental Management Programme		N/A
119	No direct connection to nutrients	Restoring Chilika Lake after opening the V new mouth	v	 The Chilika Lake was facing ecological and anthropogenic pressure which led to an overall loss of biodiversity and productivity. In 2000, a new artificial mouth was dredged to the Bay of Bengol to improve the exchange of water. Field studies were carried out to assess the present status of Chilika Lake and remedial measures. Opening a new mouth greatly improved the exchange of water between the sea and the lagoon. Improved water exchange facilitated auto-recruitment and free breeding migration of the fish, prawn, and crab juvenile into the lagoon, improving fishery resources. 	2	N/A		N/A
168	No direct connection to nutrients THIS IS LIKELY WASTEWATER	Implanting gravel and stones in river bed V	v	 Implantation of gravel and stones in river beds benefits aquatic ecology and reduces physical pressures on rivers. Fish species live under stones during the day and under gravel at night, thus this measure can help to protect biodiversity in rivers. 	N/A	N/A		N/A
179		Re-meandering V	v	 Re-meandering refers to reverting a river to its natural state by re- introducing bends. This measure can help to reduce nutrient loading to the sea, as a meandering river is longer and contains more biodiversity than a "straight" course river does. Flora and fauna living in river bends help to uptake excess nutrients in the river. Re-meandering reduces non-point nutrient pollution through retention and transformation processes, resulting from rising groundwater levels and increased flooding potential. Improved water quality. Increases biodiversity in the re- created or newly created bends in the river. 	N/A	N/A		N/A
202	No direct connection to nutrients THIS IS LIKELY WASTEWATER	Creating basins to temporarily store runoff V and release it slowly via surface flow or groundwater infiltration (Dry [extended?] Detention Ponds)	v	•Detention ponds: Depressions or basins created by excavation or berm construction that temporarily store runoff and release it slowly via surface flow or groundwater infiltration following storms.	USA	Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		

						1	-			
204	No direct connection to	Digging depressions to temporarily store	V		 Depressions were created by excavation or berm construction to 		USA	Developing Best Management		
	nutrients	and slowly release runoff from storm			temporarily store runoff and release it slowly via surface flow or			practice definitions and		
		events.			groundwater infiltration following storms using a low flow control			effectiveness estimates for		
					outlet.			nitrogen, phosphorus and		
					•This releases water over time, drying out between storm events.			sediment in the Chesapeake		
					• This releases water over time, drying out between storm events.					
								watershed		
208	No direct connection to	Digging a depression to form an infiltration	V		 A depression is dug to form an infiltration basin where sediment is 		USA	Developing Best Management		
200	nutrients THIS IS LIKELY	basin where sediment is trapped and water			trapped and water infiltrates the soil.		0.5/1	practice definitions and		
	WASTEWATER	infiltrates the soil			 No underdrains are associated with infiltration basins and trenches, 			effectiveness estimates for		
					because by definition these systems provide complete infiltration.			nitrogen, phosphorus and		
								sediment in the Chesapeake		
								watershed		
		A. 1 10 1 1 1								
254	No direct connection to	Stabilizing channel beds	v		 Beds or bottoms or channels are stabilized by the establishment of 		<mark>USA</mark>	Conservation Practices		
	nutrients REDUCING EROSION				vegetative protection, by the installation of bank protection, or by the					
					installation of upstream water control measures.					
273	What are karst areas and how	Treating sinkholes in karst areas to reduce	V		 Sinkholes in karst areas are treated to reduce contamination of 		USA	Conservation Practices		
1	are the sinkholes treated?	groundwater contamination			groundwater resources, and/or to improve farm safety.					
1	PROVIDE SPECIFICS FROM THE				•This practice may be applied as part of a conservation management					
1	PROJECT				system in karst topography, which is an area underlain by solutioned					
1					carbonate bedrock with sinkholes and caverns.					
1					carbonate betrock with shikholes and tavents.					
L										
278	How does capturing sediment	Sediment Basin	v		•Sediment basins are the last line of defense for capturing sediment		<mark>USA</mark>	Conservation Practices		
1	affect nutrient loading?				when erosion has already occurred.					
					 When possible construct basins prior to soil disturbance in the 					
					watershed.					
					•The sediment basin must have sediment storage capacity, detention					
					storage and temporary flood storage capacities.					
309					Installing underground drainage infrastructure controlls the runoff of					
					drainage waters and recirculates them back to the arable area for					
					irrigation. This both reduces the volume of water exiting the land	The transport of nitrogen from drained fields can be minimized				
					under cultivation and increases the amount of water available to	by managing the drainage system such that only the minimum				
		Controlled subsurface drainage	v		plants on the land.	drainage water necessary is allowed to exit the field.	Europe			
325	Same as 179, but explicitly states									
525	nutrient effect				Re-meandering refers to reverting a river to its natural state by re-					
	nutientencet				introducing bends. This measure can help to reduce nutrient loading	Re-meandering reduces non-point nutrient pollution through				
					to the sea, as a meandering river is longer and contains more	retention and transformation processes, resulting from rising				
					biodiversity than a "straight" course river does. Flora and fauna living					
		Re-meandering	V		in river bends help to uptake excess nutrients in the river.	improving water quality.	Europe			
326	+ +	Removing the direct linkage between	v		Drainage of agricultural land using surface ditches or sub-surface tile	By utilising this measure, runoff and risks of flooding can be	Europe			
320		drainage systems and streams				minimised.	Furone			
		drainage systems and streams	v		drains changes hydrological flow paths and rates.	minimised.	Europe			
334	No direct connection to					A general lowering of the water-table can increase soil				
1	nutrients DIRECTLY RELATED TO	Use of the second sells the destruction of			Desting of a standburght land states of the distribution of the di					
1	RUNOFF	Use of transverse collector drains to slow			Drainage of agricultural land using surface ditches or sub-surface tile	infiltration capacity, which will tend to reduce the frequency of				
1		the flow of water from down-slope			drains changes hydrological flow paths and rates. By utilising this	storm runoff. Occasionally, reductions in peak flows have been				
L		drainage networks	V		measure, runoff and risks of flooding can be minimised.	observed following drainage activities.	Europe			
2		Sustainable farming practices	w	J	 Two areas of wetlands were restored to increase the retention of 	Economic benefits were obtained by farmers in the Baltic States	Estonia, Latvia,	The Baltic Sea Regional	\$12,450,000	
1					nutrients otherwise flowing into the Gulf of Riga and the Curonian	and Russia due to the agrienvironmental credit scheme.	Lithuania,	Project, Tranche 1		
					Lagoon		Poland, and the	1		
					Farmers participated in introductory environmental		Russian	1		
					seminars in all beneficiary countries		Federation	1		
							eueration	1		
					 Farms/farmers participated in EMS courses offered by Baltic Sea 		1	1		
					Regional Project (BSRP)		1	1		
					•Farms/farmers benefited from the BSRP agrienvironmental credit		1	1		
1					scheme		1	1		
8		Household-based planted soil filters and/or	W				Bulgaria	Developing a Model for	N/A	
		constructed wetlands*						Sustainable Water and Waste		
								Management for Rural Areas		
								in Bulgaria		
12		Restoring wetlands	w		 Ecosystems were protected at two internationally important Ramsa 	 This project served as a replicable model for the treatment of 	Hungary	Hungary — Reduction of	\$32,350,000	
12		Restoring wetlands	w				Hungary	Hungary — Reduction of Nutrient Discharges	\$32,350,000	
12		Restoring wetlands	W		sites.	non-point sources of nutrient pollution using wetlands and	Hungary	Hungary — Reduction of Nutrient Discharges	\$32,350,000	
12		Restoring wetlands	w		sites. • Nutrient trapping capacity of the Gemenc and Beda-Karapancsa		Hungary		\$32,350,000	
12		Restoring wetlands	w		sites.	non-point sources of nutrient pollution using wetlands and	Hungary		\$32,350,000	

33	What were the results of monitoring? PROVIDE MORE SPECIFICS	Rehabilitating wetlands Distributing guidance manuals and pilot	W	 A small pilot site was created grass carps were removed natural wetland vegetation, rooted and floating native reed-grass with high nutrient removal capacities were collected from the surrounding area and was replanted in the pilot site. Water quality monitoring was taking place at the start and end of project to see if nutrient pollution went down. 6 pilot demonstration sites were operated to demonstrate 	 Sewage plant discharge improved Water quality improvement in future helping local bathing area NGO made own local radio station that now promotes their work 	Hungary Danube River	DRP Small Grants: Sződrákos Creek Program – Phase 2 (Hungary - Reduction of Nutrient Discharges - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea) DRP Small Grants: 1.4	\$4,650 N/A	
42		demonstrations on land use and wetlands to improve nutrient reduction / retention	v	 b piol demonstrated b piol demonstrate b adternative land management approaches and enhanced wetlands nutrient retention capacity A guidance manual provided relative estimates of nutrient retention from various approaches to wetland management. 		Basin	(Wetlands pilots - undertaken by WWF-DCP) and 4.3 (Nutrient removal by wetlands - both theory and demos)	N/A	
51		Conserving wetlands	w	 A feasibility study was conducted to rehabilitate, construct and maintain wetlands areas to reduce nutrient loading. 		Bosnia and Herzegovina	Water Quality Protection Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danuba River and Black Sea	\$20,270,000	
79		Constructing a floating island vegetated with native plants from post-consumer polymer materials to be placed in ponds or waterways(Floating Treatment Wetland (FTW))	w	 A floating island is constructed from post-consumer polymer fibers and vegetated with native plants. Placing a Floating Treatment Wetland (FTW) in waterways, ponds, lakes or septic systems allows plant roots to remove ammonia, nitrogen, phosphorus and suspended solids from the wastewater. 	 Approximately 80% of the nutrients removed from the water are due to bacteria attached to the plant roots while the other 20% is actual plant uptake. 	USA	Floating Island International patented Floating Treatment Wetlands		N/A
83		Living Machine Tidal Flow Wetland	w	•All wastewater is initially treated before entering the Living Machine. •Water flows through a small wetland in which the plant take up	 System decreased biochemical oxygen demand, total suspended solids and turbidity. 	USA	Living Machine		N/A
84	insert capacity RESEARCH ONLINE AT WORRELWATER.COM	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	 System decreased biochemical oxygen demand, total suspended solids and turbidity. 	USA	Living Machine		N/A
85	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	 System decreased biochemical oxygen demand, total suspended solids and turbidity. 	USA	Living Machine		N/A
86	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	System decreased biochemical oxygen demand, total suspended solids and turbidity.	USA	Living Machine		N/A
87	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	System decreased biochemical oxygen demand, total suspended solids and turbidity.	USA	Living Machine		N/A
88	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	•System decreased biochemical oxygen demand, total suspended solids and turbidity.	USA	Living Machine		N/A
89	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY	 System decreased biochemical oxygen demand, total suspended solids and turbidity. 	USA	Living Machine		N/A
90	insert capacity	Living Machine Tidal Flow Wetland	w	SAME AS OTHERS DIFFERENT CAPACITY		USA	Living Machine		N/A
132		Buffers and artificial wetlands	w	Vegetative buffer strips are inexpensive to install and remove some solids from liquids. Different practices include; •grassed waterways •contour buffer •stream riparian buffer.	These buffers impede runoff flow and reduces erosion and promotes infiltration. Plant uptake reduces excess contaminants that reach the water.	N/A	N/A		N/A
167		Establishing wetlands	w	 Constructed or established wetlands can help to capture nutrients from agriculture run-off before entering water bodies. Wetlands can be natural, artificial, permanent or temporary. 	 Wetlands increase landscape diversity by providing habitat for a variety of fish and wildlife species. Wetlands protect/maintain and improve surface and ground water quality, control soil erosion and provide barriers for flood control. Wetlands can reduce nitrogen concentrations in water bodies through denitrification. Wetlands can increase biodiversity and recreational values of landscapes. Wetlands provide natural flood control in areas that are sensitive to erosion or drought. 	N/A	N/A		

101	ү	Barrie Concernation of		,	whether describes a second	The second se	n to st			1
214		 Restoring wetlands Creating and restoring wetlands	w		 Wetland restoration restores the natural hydraulic condition in a field that had subsurface or surface drainage. Wetland creation establishes a wetland designed to manage water to optimise nutrient reduction before discharge. Created wetlands may have planned/controlled water inputs whereas restored wetlands accept the natural water flow from their catchment. The GEF-World Bank Bulgarian project on Wetlands Restoration and Nutrient Reduction illustrates a cost effective restored wetlands. •Natural/historic functions are returned to a former wetland. • A gain in wetland acres results from restoration	 Total nitrogen and total phosphorous removal depends on wetland size compared to flow or catchment area and water retention time, with three-seven days retention as optimum. The project restored 30 percent more wetlands than planned and will quantify nutrient reductions but is a model with high replication value. Nutrients and suspended particles are removed via settling. Nitrogen is further removed primarily via plant and microbial uptake and the nitrification-denitrification reactions, while phosphorus is further removed by soil sorption. 	Bulgaria USA	Best Practices for Water Quality Protection and Replication Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake		
215		 Creating wetlands	w		 Wetlands that did not previously exist are created on an upland or deepwater site. A gain in wetland acres results from wetland creation 	Nutrients and suspended particles are removed via settling. Nitrogen is further removed primarily via plant and microbial uptake and the nitrification-denitrification reactions, while phosphorus is further removed by soil sorption.	USA	watershed Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		
313		 Establishment of wetlands	w		 Constructed or established wetlands can help to capture nutrients from agriculture run-off before entering water bodies. Wetlands can be natural, artificial, permanent or temporary.	Wetlands increase landscape diversity by providing habitat for a variety of fish and wildlife species. They also protect/maintain and improve surface and ground water quality, control soil erosion and provide barriers for flood control. Additionally, wetlands can reduce N loads by 14 t/year.	Europe			
16		Improving water quality			Village drinking water quality and hygiene were improved Ferrestrial and aquatic habitats were reconstructed	 health and sanitation improvements were made in villages Populations of flora and fauna of local economic and social importance increased 	Moldova	Agricultural Pollution Control Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$10,740,000	
20	Same as #16	improved water quality					Romania	Agricultural Pollution Control Project - under WB-GEF Strategic Partnership for Nutrient Reduction in the Danube River and Black Sea	\$11,100,000	
35		BAP 1: Farm Management					Siberia	DRP Small Grants 1.2/1.3 (Agriculture)	N/A	
106		Increased technology					Uganda and Kenya	Development and transfer of conservation agriculture production systems (CAPS) for small-holder farms in eastern Uganda and western Kenya		N/A
111		Develop improved conservation practices					India and Nepal	LTRA-11: CAPS among tribal societies in India and Nepal		N/A
200		Conservation Plans			 Practices other than conservation tillage or no-till, that reduces soil loss to or below tolerance, defined as the maximum amount of erosion at which the quality of a soil as a medium for plant growth can be maintained. Nutrient and sediment reductions vary by the land use, e.g. conventional tillage, conservation tillage, hayland or pastureland, in the model that a conservation plan is applied to. 		USA	Societies in find and repair Developing Best Management practice definitions and effectiveness estimates for nitrogen, phosphorus and sediment in the Chesapeake watershed		
314		Implantation of gravel and stones in river bed					-			
320	Color Key	Permanent Grassland on erosive areas								
	Project info too generic: general project name									
	project name Totally unusable									
1	General flag									

ent							
Improving N management and irrigation practices results in efficiency and yield.	?	 Alterations to nitrogen application and irrigation methods were made to increase crop output and nitrogen efficiency. Previously nitrogen was applied twice a year and furrow irrigation was used Through the implementation of intense educational programs nitrogen application and irrigation methods were altered. Irrigation improvements include the use of drip irrigation and changes in land practices. Nitrogen application was altered in ways to reduce nitrate leaching, such as applying nitrogen after irrigation. 	Yields increased and nitrogen use was more efficient		d SW (daho (reasure Valley)		
The right source and rate of potassium for processing tomato		decreased soil K availability. So, yield and benefit of processing tomato in the northwestern province is often restricted by inadequate K nutrition.	economical source of K .				
Nutrient Expert improves grain, profitability and efficiency for maize.		 A dynamic and robust nutrient management approach is essential to increase yields and optimize profits for smallholder farmers practicing within intensified cropping systems. A new fertilizer recommendation method based on yield response and agronomic 	• NE plots had higher grain yields and net profits compared with farmer practice (FP) and the local "optimal" soil test-based recommendation (OPT local). • The yield increase achieved with NE could be attributed to the balanced application of N, P and K based on location-specific crop requirements that take into account yield potential and indigenous soil nutrient supplies.	Xinjiang, North China			
Management of agricultural practices results in declines of filamentous algae in the lake Littoral		 to reduce runoff were implemented in 2003. In those 3 sites the algal cove(compared to pre BMP) was statistically lower 8 of the 11 years (272%). While the 3 non BMP sites had lower algal cover 3 or the 12 years (25%). BMP site 1: row crops and dairy farmingfull spectrum managemen practices: fertilizer reduction, cover crops, contour strips, reduction in fall and winter manure spreading, various grass filters for runoff from 	t	Conesus Lake, NY US			
Responses of lake macrophyte beds dominated by Eurasian watermilfoil to BMP in agricultural sub-watersheds: Declines in biomass but not species dominance		 High biomass and dominance of invasive root species Eurasian watermilfoil was present. It was tested whether agricultural BMPS designed to reduce tributary nutrient and soil loss from the watershed could reduce populations of watermilfoil downstream in the lake littoral. Six macrophyte beds were monitored during a 3 year baseline (200: 2003) prior to BMPS and 4 years experimental period after a variety of BMPS were implemented in 3 sub water sheds 	 for the 3 BMP beds the biomasss decreased by 30-50% and was statically lower than pre BMP baseline value sin 7 of 11 experimental samples. Non BMP beds the biomass was statistically indistinguishable from pre BMP baseline in all 12 experimental samples. Milfoil remained overwhelming dominant at all sites in the entire period. These results provide impetus for the use of watershed nutrient management to control the nuisance growth of Eurasian watermilfoil on local scale in lake littoral 	Conesus Lake, NY US			
	practices results in efficiency and yield. The right source and rate of potassium for processing tomato Nutrient Expert improves grain, profitability and efficiency for maize. Management of agricultural practices results in declines of filamentous algae in the lake Littoral Management of agricultural practices results in declines of filamentous algae in the lake Littoral Responses of lake macrophyte beds dominated by Eurasian watermilfoil to BMP in agricultural sub-watersheds. Declines in	Improving N management and irrigation practices results in efficiency and yield. ? Improving N management and irrigation practices results in efficiency and yield. ? Improving N management and rate of potassium for processing tomato ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ? Improving N management of agricultural practices results in declines of filamentous algae in the lake Littoral ?	Improving N management and irrigation practices results in efficiency and yield. Alterations to nitrogen application and irrigation methods were made to increase crop output and information during to improve versional introgen application and irrigation and irrigation during to improve wes used The right source and rate of potassium for processing tomato *Thereight methods were altered irrigation wes used *Thereight methods were altered irrigation wes used *Thereight source and rate of potassium for processing tomato Nutrient Spent improves grain, profitability and efficiency for male. *Time advantation of diprime profits for small-back for processing tomato do diprime profits for small-back for increase yields and point of processing transition. Mutrient Spent improves grain, profitability and efficiency for male. * Advantation ad diprime profits for small-back for increase yields and the share transition of the lake Littoral Moragement of agricultural protitices results in declines of filamentous algein in the lake Littoral *	Improving N management and infigure P Alterations to not provide and infigure national provides an	Improving N management and integration practices reach in efficiency and yeld. P Advantants to integrate againstitute of integrate	miproling if management statingstill r - Activations if subspace spectration and indegets spectratind in anonoraspectration indegets spectrating spectration and ind	Process process process process production of legitime standards are legitime. Process production of legitime standards are legitime standards are legitime standards are legitimes are legiti

Lewis Winter Manure Makarewicz Exp Watersheds (2)	Winter application of manure on an agricultural watershed and its impact on down stream nutrient fluxes The impact of agricultural best management practices on downstream systems: Soil loss and nutrient chemistry and flux to Conesus Lake, New York, USA	 Multiple BMPS were simultaneously introduced (strip cropping, fertilizer reduction, tiling, manure disposal practices, etc) to determine the impact of concentrated management effort on nutrient and soil loss from one watershed within the Conesus Lake Cathment. three years in the study there was an opportunity to test the responsiveness on one BMP (winter manure application of leids.) The spensive to the winter manure applications would impact dissolved and particulate fractions in the alteration waters. 6 small agricultural watersheds in the Conesus Lake catchment were selected to test the impact of BMP on mitigation of nonpoint nutrient sources and soil loss from farms to downstream Gornesus Lake, and tillage practices) were used. aquatic systems. Significant reduction and largest # of significant reduction in analytes
Simon Bacteria Nonevents	Impacts of manure management practices on stream microbial loading into Conesus Lake, NY	 •E.Coli presence want recorded in two streams feeding into Conesus Lake. Prior to the implementation of BMPS site 1 in which 74% of the surrounding land was agriculture based had a presence as high as 2806 CFU/100 ML exceeding EPA Designated Bathing Beach Standard. Site 2 which only 13% of surrounding land was agriculture has E.coli levels near or below the standard. At site 1 BMPS such as manure mangagment were implemented.
Simon events bacteria	Storm water events in a small agricultural watershed: Characterization and evaluation of improvements in stream water microbiology following implementation of Best Management Practices	 Storm water events and nonevent water flows contributed to the annual discharge from Graywood Gully, a sub-watershed of Conesus Lake, whose land use is 74% agriculture. Event storm water elevated in materials associated with particulates such as total suspended solids (total Kjeldahi nitrogen and total phosphorus. Storm water events accounted for 92% of the E.coli loading. Water from high flow nonevents was elevated in soluble components such as sodium, nitrate, and soluble reactive phosphorus. The implementation of BMPS in the GrayWood Gully watershed has improved the microbiology of the water decreasing the presence of <i>E.coli</i> by 10 fold over a five year period.
Zollweg	Detecting effects of Best Management Practices on rain events generating nonpoint source pollution in agricultural watersheds using a physically-based stratagem	 This research documents a methodology for confirming reductions in NPSP resulting from implementation of agricultural BMPS, it employs that methodology to confirm the success of BMPs implemented. By using the Thornthwaite-Mather procedure to model soil moisture status in addition to even rainfall total, it was possible to remove the major sources of variability, essentially reducing the number of experimental variables to the BMP itself. The main BMP implemented was the reduction of fertilizer and seasonal application. Application of this method revealed that BMPS can greatly reduce export of NPSP generated pollutants o receiving waters. Eximates of NPSP reduction range from 53% for soluble reactive phosphorus to 89% for nitrate.
Module 3-2-2	Elemental sulphur fertilizer applied to soybean grown on Brazilian cerrado soils is highly effective.	•Soils in Brazil are commonly deficient in both S and P nutrients. As a result crops suffer from deficiency symptoms and in response S is applied in both annual and perennial crops. •In nature S is mainly taken up in the sulfate form, however, when elemental S is applied to the soil autotrophic bacteria or sulfate: it which results in sulfuric acid which dissociates to sulfate: it which results in sulfuric acid which dissociates to sulfate: Brazil •Elemental S mixed with bentonite is pastille form (90% S) has been an alternative to more soluble forms of S used to improve the fertility of S in soils. •Fertilizers based on elemental S and bentonite are known to be effective in correcting S deficiencies with no harm to the environment. In a comparative study, elemental S in pastille form showed similar performance compared to other sources, even with a broadcast application. In nature S is mainly taken up in the sulfate form, however, when elemental S is applied to the soil autotrophic bacteria output to the soil autotrophic bacteria output to the soil autotrophic bacteria output to the soil sources, even with a broadcast application. Brazil

Module 3-2-3	Maximizing sugarcane yield by liming and phosphogypsum aplication	 Acidic soils can limit plant development and yield by decreasing root elongation, causing AI and Mn toxicity and decreasing the availability of nutrients. Soil pH can be increased by the application of products such as lime and phosphogypsum. Lime corrects soil acidity at soil surface layers. Phosphogypsum (PG) improves acidity effects at deeper soil layers and decreases AI toxicity and adds Ca to lower level soil layers. The application of liming and phosphogypsum improves water and nutrient absorption and availability. •When lime and phosphogypsum are used, there is a positive interaction between them that helps ameliorate soil acidity and improve sugarcane yield.
Module 5-1-4	Splitting N application improves grain yield and N efficiency for winter wheat	 Nitrogen is an essential contributor to grain yield of winter wheat. An experiment was conducted to study the effect of different basal such as topdressing ratios for N application on grain yield, and N uptake and efficiency. Basal application occurred at Zadoks GS30 growth stage (about 150 days after planting). The best splitting treatment occurs with 60 kg N/ha as topdressing. Napplication increases grain yield by 20 to 35% and two treatments with N splitting increases 10 to 12% more yield as compared with one application. Nitrogen splitting increases N uptake by 2 to 7% and improves N recovery efficiency by 9 to 25%. The best splitting treatment occurs with 60 kg N/ha applied basally and 180 kg N/ha as topdressing.
Module 6-3-1	Phosphorus placement for soybeans grown on tropical soil	 Levels of P are generally low in tropical soils, which limit plant development and yield, specifically for crops with high P demands such as soybeans. P application must be managed to minimize the competition for P between soil and plant, thus by maximizing P uptake. P fertilizer was applied torcadcast or banded on two different soil conditions: low P (original soil) and high P (having received a previous broadcast application of 200 kg P205/ha incorporated into the top 20 cm). Soils low in P that used band application allowed for the use of lower rates to obtain the maximum yield. Soils with a previously incorporated broadcast application for broadcast or banded on two different soil conditions: low P (original soil) and high P (having received a previous broadcast application of 200 kg P205/ha incorporated into the top 20
SAIN Update March 2013 EN	UK-China Sustainable Agriculture Innovation Network (SAIN)	PResearchers of SAIN are starting a new project on knowledge policy and practice for sustainable nutrient management and water resources protection in UK and Chinese agro-ecosystems. It will focus on achieving more sustainable management of N and P in agro- ecosystems.

Practice Cost	Project manager	Contact phone	Contact email	Project document URL link	1			1			r - r	1
Practice Cost	Project manager	number	contact email	Project document ORL link								
		number										
N/A	R. Carmona	34 952137525	rcarmona@uma.es	www.elsevier.com/locate/aqua-online			1					
N/A	Max Troell	N/A	max@beijer.kva.se	www.elsevier.com/locate/aqua-online								
			1									
			1									
			1									
		(622)020 2244	1.6.0								<u> </u>	
N/A		(632)920-2211	info@pemsea.org	www.pemsea.org								
									 		↓	
N/A	Someswara Rao											
	Irrinki											
N/A	S. B. Padhi	1	sailabalapadhi@gmai		1						 	
			.com									
			1									
			1									
			1									
N/A	Girija Jayaraman	91-11-26591310	girija.jayaraman@gm ail.com	1								
			ail.com									
			1									
			1									
			1									
			1									
			1									
						1 1 1						

a: /a	T	1	T		1													
N/A																		
N/A	Arthur J Gold		agold@uri.edu															
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful														
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0														
				26849&navid=120160340000000&pnavid=12016000														
				0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice														
				s%20 %20NRCS														
	-		-	http://www.nrcs.usda.gov/wps/portal/nrcs/detailful												 		
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0														
				26849&navid=12016034000000&pnavid=12016000														
				0000000&position=Not%20Yet%20Determined.Html														
				&ttype=detailfull&pname=Conservation%20Practice														
				s%20 %20NRCS														
	Omer Faruk Mutlu		1															
			Farukm@kkgm.gov.t	r														
2,300,000	George Maglakelidze	995.32.999.942	PPIU@wbagro.ge															
Practice cost - No-anaerobic	W. Mulbry	1-(301)504-6417	mulbryw@ba.ars.usc	www.elsevier.com/locate/ecoleng	1						1	1			1			
digester pre-treatment:			a.gov															
\$1,675,600; With anaerobic			1															
digester pre-treatment: \$1,634,500			1															
ç2,03 4 ,300			1															
N/A	Walter Adey		1	http://www.bione.org/doi/full/10.1525/bio.2011.61.														
				<u>6.5</u>														
			1															
			1															
	1	1	1		1	1	1	1	1	1	I	l I			I			

		1			-									
N/A	Walter Adey			http://www.bione.org/doi/full/10.1525/bio.2011.61. 6.5										
				<u>0.5</u>										
21/2	Malta Ada.			http://www.bione.org/doi/full/10.1525/bio.2011.61.			 						_	
N/A	Walter Adey			nttp://www.bione.org/doi/fuii/10.1525/bio.2011.61. 6.5										
				<u></u>										
N/A	Walter Adey			http://www.bione.org/doi/full/10.1525/bio.2011.61.										
				<u>6.5</u>										
	EDIS			http://edis.ifas.ufl.edu										
N/A	Robert K. Hubbard	1-(220)296-2902	hubbard@tifton.usda											
IN/A	Robert K. Hubbaru	1-(229)380-3893	.gov											
			<u> </u>											
\$10,160,000	Bueno Dickens Sande	(256)77-419-734	bdsande@yahoo.co.u											
			<u>k</u>											
														'
	S. K. Pattanayak		sushanta											
			1959@yahoo.com											
	S. K. Pattanayak		sushanta 1959@yahoo.com											
			1322@yanoo.com											
				http://archive.chesapeakebay.net/pubs/BMP_ASSES										
				SMENT_REPORT.pdf										
	1	1	1	1										

 I			 		1	 	 	 				
Doug Smith	drsmith@pudue.edu	http://www.sera17.ext.vt.edu/Documents/BMP_die										
		tary_phytase.pdf										
			 	_					 		 	
Christopher Lind		http://www.sera17.ext.vt.edu/Documents/BMP_lak										
	com	e_and_Pond_Treatment.pdf										
<u>}</u>		http://www.nrcs.usda.gov/wps/portal/nrcs/detailf										
		ull/?ss=16&navtype=SUBNAVIGATION&cid=nrc										
		ull/?ss=16&navtype=SUBNAVIGATION&cid=nrc s143_026849&navid=12016034000000&pnavi										
		d=12016000000000&position=Not%20Yet%20 Determined.Html&ttype=detailfull&pname=Cons										
		Determined.Html&ttype=detailfull&pname=Cons										
		ervation%20Practices%20 %20NRCS										
 		http://www.nrcs.usda.gov/wps/portal/nrcs/detailful	 			 	 	 	 		 	
		I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
		26849&navid=12016034000000&pnavid=12016000										
		0000000&position=Not%20Yet%20Determined.Html										
		&ttype=detailfull&pname=Conservation%20Practice										
		s%20 %20NRCS										
<u>}</u>		http://www.nrcs.usda.gov/wps/portal/nrcs/detailful										
		I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
		26849&navid=12016034000000&pnavid=12016000										
		0000000&position=Not%20Yet%20Determined.Html										
		&ttype=detailfull&pname=Conservation%20Practice										
		s%20 %20NRCS										
Cuttle, S. P.		http://www.nal.usda.gov/wqic/ceap/CEAP06comple										
		te.pdf										
1					1							

[Γ			[1				1			
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons_from_the_L										 		
				ake_Peipsi/Chudskoe_Basin_Management_Program												
\$10,160,000	Bueno Dickens Sande	2 (256)77-419-734	bdsande@yahoo.co.u	1												
			<u>k</u>													
N/A																
	N/A	N/A	N/A	N/A		 		 		 				 	 	
	10/4	10/4	11/4													
N/A	N/A	N/A	N/A	N/A												
																ļ
N/A	N/A	N/A	N/A	N/A												
Plant copse barrier: Plant	N/A	N/A	N/A	N/A												
alders at suitable locations: 13.50 €/each (3 per linear																
m). Maintenance: ~ 1.60 €/m * a	a															
N/A	N/A	N/A	N/A	N/A												

	 	<u> </u>						 	 		 	 	 	 	
Image:															
Image:				SMENT_REPORT.pdf											
Image:															
Image:															
Image:			-		-								 		
Image:				http://archive.chesapeakebay.net/pubs/BMP_ASSES											
indegree indegree <td< th=""><th></th><th></th><th></th><th>SMENT_REPORT.pdf</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>				SMENT_REPORT.pdf											
indegree indegree <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
indegree indegree <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
indegree indegree <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
indegree indegree <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>															
	Dennis Carman														
ability of the back of balance of the balance of t			sda.gov	p_cropping.pdf											
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t															
ability of the back of balance of the balance of t			+								 	 	 	 	
Image: Section of the section of th				http://www.epa.gov/owow_keep/NPS/chesbay502/											
Image: Section of the section of th				pdt/chesbay_chap02.pdf		1									
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th															
Image: Section of the section of th				http://nutrient-bestpractices.iwlearn.org/nutrient-											
Image: Set and				reduction-practices/lwe-factsheets-on-nr-good-											
Image: Set				practices/BulgariaRomaniaandMoldova-											
Image: Second															
Image: Set Substrate State St															
Image: Set Substrate State St															
Image: Set Substrate State St															
Image: Set Substrate State St															
Image: Set Substrate State St					1	1									
Image: Set Substrate State St															
Image: Set Substrate State St						1									
Image: Set Substrate State St				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
26849&navid=12016034000000&pnavid=1201600 00000000_position=Not%20Yet%20Determined.Html ktype=detailful&pname=Conservation%20Practice sktype=detailful&pname=Conservation%20Practice sktype=detailful&pname=Conservation%20Practice sktype=detailful sktyp=detailful sktype=detailful<				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
Image: Second															
kttype=detailfull&pname=Conservation%20Practice kttype=detailfull&pname=Conservation%20Practice kttype=detailfull kttype=detailfulll kttype=detailfull kttype=				0000000&position=Not%20Yet%20Determined.Html	1	1									
s%201%20NRCS http://www.nrcs.usda.gov/wps/portal/nrcs/detailfull http://www.nrcs.usda.gov/wps/portal/nrcs/det															
Image: Constraint of the second se				s%20 %20NRCS	1	1									
i/?ss=16&navtype=SUBNAViGATION&cid=nrcs143_0 26849&Rnavid=12016034000000&gnavid=1201600 00000000&gnavid=120160340000Html 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000%pravid=12016004 000000000%pravid=12016004 0000000000004 0000000000004 0000000004 0000000004 00000000004 0000000004 000000004															
i/?ss=16&navtype=SUBNAViGATION&cid=nrcs143_0 26849&Rnavid=12016034000000&gnavid=1201600 00000000&gnavid=120160340000Html 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000&gnavid=12016004 00000000%pravid=12016004 000000000%pravid=12016004 0000000000004 0000000000004 0000000004 0000000004 00000000004 0000000004 000000004			+		+										
26849&navid=12016034000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice				nttp://www.nrcs.usda.gov/wps/portal/nrcs/detailful	1	1									
0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice															
&ttype=detailfull&pname=Conservation%20Practice				26849&navid=12016034000000&pnavid=12016000											
kttype=detailtulikpname=Conservation%2UPractice s%20]%20NRCS															
				&ttype=detailfull&pname=Conservation%20Practice											
				s%20 %20NRCS											
						1									

				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=120160340000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html											
				&ttype=detailfull&pname=Conservation%20Practice											
				accype-detailfullaphane-conservation%20Practice											
				s%20 %20NRCS											
			-												
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=12016034000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html											
				&ttype=detailfull&pname=Conservation%20Practice											
				s%20 %20NRCS											
	+				├										
	1			http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=120160340000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html											
				&ttype=detailfull&pname=Conservation%20Practice											
	1			s%20 %20NRCS											
	1														
	1														
	+	1	1	http://www.nrcs.usda.gov/wps/portal/nrcs/detailful	├										
	1			I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=120160340000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html											
				&ttype=detailfull&pname=Conservation%20Practice											
				s%20 %20NRCS											
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=12016034000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html											
				&ttype=detailfull&pname=Conservation%20Practice											
	1			s%20 %20NRCS											
	1	t i i i i i i i i i i i i i i i i i i i	t	http://www.nrcs.usda.gov/wps/portal/nrcs/detailf											
	1			ull/?ss=16&navtype=SUBNAVIGATION&cid=nrc											
			1	s143_026849&navid=12016034000000&pnavi											
				d=120160000000000000000000000000000000000											
1			1	Determined.Html&ttype=detailfull&pname=Cons											
				ervation%20Practices%20 %20NRCS											
				ervation7%20F1actices7%20[%20INKC5											
			-	1	┝────┦										
	Bardgett, R. D.;			http://www.nal.usda.gov/wqic/ceap/CEAP06comple											
	Hobbs, P. J.; and			te.pdf											
	Frostegard, A.														
	1														
L															
	1	1													
1			1												
1	1														

														.
														.
														.
<u> </u>											 	 		
														.
														.
														.
														.
														.
			(1876 PROTMEAS:											.
			Final_Report_part2_CCompliance_PR_171107_1v.do c p.156)											
														.
														.
			(Wenger, 1999)											.
														.
														.
Mr. Ahmed Djoghlaf 2	254-2-624166	Ahmed.Djoghlaf@un ep.org			T		T							, 1
Pornsook Chongprasith		marinepollution_pcd @yahoo.com												
energyrusien		<u>e janoo.com</u>												

[T		1	1 1	<u> </u>	1		1		 	 	 	 	 		
978,102	Ms. Ivanka Todorova	(359-2) 940-6643	slm@moew.governm		1											
	1		ent.bg													
27,000,000	Peter A. Dewes, IBRD			http://web.worldbank.org												
	team leader		org													
	1															
	1															
	Omer Faruk Mutlu															
	1		Farukm@kkgm.gov.tr		1				1							
				http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf												
				SMENT_REPORT.pdf												
	1				1				1							
	1															
	1				1				1							
	1				1				1							
									1							
	1															
	1	l		http://www.lwmea.org/copy_of_backstopping-											1	
	1			http://www.lwmea.org/copy_of_backstopping- reports/Colin_LWMEA2006-not-anx46.pdf												
	1				1				1							
	1				1				1							
									1							
									1							
									1							
	1				1				1							
	1				1				1							
-	Lawrence J. Sikora		sikoral@ba.ars.usda.g	http://www.sera17.ext.vt.edu/Documents/BMP_co		1	1									1
				mposting_effects.pdf												
	1			inposting_encets.put												
	1				1				1							
	1															
	1				1				1							
	1															
									1							
									1							

600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
	,													
N/A	Manual R. Reyes			http://www.oired.vt.edu/sanremcrsp/professionals/		-								
				http://www.oired.vt.edu/sanremcrsp/professionals/ research-activities/phase4/ltras/ltra12/										
														1
														1
														1
N/A	Manual R. Reyes			http://www.oired.vt.edu/sanremcrsp/professionals/										
	indiada in neyes			research-activities/phase4/ltras/ltra12/										
Between £10/ha/year and	N/A	N/A	N/A	N/A										
£67.50/ha/year.		,												
														1
														1
														1
														1
														1
														1
														1
														1
				http://nutrient-bestpractices.iwlearn.org/nutrient-										
				http://nutrient-bestpractices.iwlearn.org/nutrient- reduction-practices/plonearticle.2011-05- 02.5730451017/files/Best%20Practices.pdf										
				02.5730451017/mes/Best%20Practices.pdi										
			1	1										

				http://nutrient-bestpractices.iwlearn.org/nutrient-												
				reduction-practices/plonearticle.2011-05- 02.5730451017/files/Best%20Practices.pdf												
				02.5730451017/files/Best%20Practices.pdf												
					1			1						1		
		1														
	Owens, L. B. and			http://www.nal.usda.gov/wqic/ceap/CEAP06comple te.pdf	1			1						1		
	Bonta, J. V.	1		te.pdf												
					1			1						1		
		1														
		1														
	-								-						 	
				Crusciol, C.A.C., et al. 2010. Better Crops with Plant												
				Food. 94:2, pp. 14-16												
	Jan Thulin		an@ices.dk	http://www.ices.dk/projects/BSRP.asp												
		1														
		1														
		1														
\$10,740,000	Alexandru	+373.22.223.106	alexjol@capmu.md	http://www.capmu.md/?a=1&id=60												
	Jolondcovschi				1			1						1		
					1			1						1		
					1			1						1		
					1			1						1		
		1														
		1														
		1														
		1														
		1														
					1			1						1		
					1											
	Janos Tobias	(36-1) 457-3300	tobiasj@budapest.hu													
	Janos Tobias	(36-1) 457-3300	tobiasj@budapest.hu													
	Janos Tobias	(36-1) 457-3300	tobiasj@budapest.hu													
	Janos Tobias	(36-1) 457-3300	tobiasj@budapest.hu													
	Janos Tobias	(36-1) 457-3300	<u>tobiasj@budapest.hu</u>													

						1			r	r		1		r		 1		r		
	Almir Prljaca	(387-33) 565-400	prljaca@voda.ba	http://gefonline.org/projectDetailsSQL.cfm?projID=2																
				143																
N/A	Catherine Chan-			http://www.oired.vt.edu/sanremcrsp/professionals/																
	Halbrendt			research-activities/phase4/ltras/ltra11/																
N/A	N/A	N/A	N/A	N/A																
640.460.000	D D D	de (256)77-419-734		(Helsinki Commission, 2007)																
\$10,160,000	Bueno Dickens Sand	ie (256)77-419-734	bdsande@yahoo.co.	<u>u</u>																
			<u>^</u>																	
Using minimal tillage would	N/A	N/A	N/A	N/A																
save an estimated 97 EUR																				
per hectare. That is, about	1	1																		
1950 EUR savings on a 200	1	1																		
hectares farm. The annual																				
cost reduction in direct sowing of annual crops																				
compared to conventional																				
tillage ranges between 40																				
and 60 EUR per hectare in																				
Southern Europe.																				
N/A	N/A	N/A	N/A	N/A																
N/A	IN/A	IN/A	N/A	N/A																
N/A	N/A	N/A	N/A	N/A																
IN/A	IN/A	IN/A	IN/A	N/A																
								1					1							
							1	1			1					1				
								1					1							
							1	1			1					1				
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful																
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0																
	1	1		26849&navid=120160340000000&pnavid=12016000																
				0000000&position=Not%20Yet%20Determined.Html																
	1	1		&ttype=detailfull&pname=Conservation%20Practice																
	1	1		s%20 %20NRCS																
	1	1																		
	1	1																		
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful				1					1							
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0				1					1							
				26849&navid=120160340000000&pnavid=12016000		1		1	1	1		1	1				1		1	

				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
				26849&navid=12016034000000&pnavid=12016000 000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%201%20NRCS										
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful //?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0 26849&navid=12016034000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%201%20NRCS										
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful I/?ss-16&navtype=SUBNAVIGATION&cid=nrcs143_0 26849&navid=120160340000000&pnavid=12016000 000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%20]%20NRCS										
				(APIB. Agronomic Soil Conservation Measures.										
	Diana Iskreva, Executive Director, Earth Forever Foundation	(359-897) 801-179	diskreva@earthforev er.org	http://megapib.nic.in/soil_conservation_control.htm)										
\$10,740,000	Alexandru Jolondcovschi	+373.22.223.106	alexjol@capmu.md	http://www.capmu.md/?a=1&id=60										
\$10,800,000	Franziska Meinzinger		f.meinzinger@tuhh.d e	http://www.apcp.ro/										

4						1				1 1	 	-	 		
\$4,130,000	Anita Kodzoman, Programme Officer	rel.: (389-23) 249-560	anita.kodzoman@un dp.org	http://prespa.iwlearn.org											
	for Energy and														
	Environment at UNDP														
	UNDP														
\$4,130,000	Mr. Akihito Kono, Programme Officer		Akihito.Kono@undp. org	http://waterwiki.net/index.php/Macedonia _Integrated_Water_Resources_Management_in_the											
	for Energy and		org	_Prespa_region_through_participatory_processes_a	-										
	Environment at			nd_dialogue											
	UNDP CO Macedonia	а													
\$1,000,000	Natalia Alexeeva			http://www.ctc.ee/index.php?menu_id=102⟨_i											
			dp.org	d=2											
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons_from_the_l											
				ake_Peipsi/Chudskoe_Basin_Management_Program											
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons_from_the_I											
				ake_Peipsi/Chudskoe_Basin_Management_Program											
N/A	Rodelio Carating		rodelcarating@bswm	<u>1</u>											
			.da.gov.ph												
N/A	P. Gopala Krishna		gopalakrishnap@corc	0											
			mandel.murugappa.c												
			<u>om</u>												
N/A	Arthur J Gold		agold@uri.edu												
N/A	N/A	N/A	N/A	N/A											
1															
1															

N/A	N/A	N/A	N/A	N/A										
N/A	N/A	N/A	N/A	N/A										
N/A	N/A	N/A	N/A	N/A										
Reducing N-application by	N/A	N/A	N/A	N/A	 	 			 	 		 		
80% would cost around 87- 151 DKK/ha, due to the	17.4	19/4	175											
impact on crop yield.														
				http://www.tfi.org/publications/Article%203.pdf										
		l												

			1											
				http://www.tfi.org/publications/Article%203.pdf										
				ftp://ftp-fc.sc.egov.usda.gov/NHQ/practice-										
				standards/standards/590.pdf										
				ftp://ftp.fao.org/agl/agll/docs/gepnm.pdf										
\$36,367	Artur Nebunu		cdria, cabul@vaboo.c	(Cuttle et al)			 							
\$20,207	Artur Neburu		cdrie_cahul@yahoo.c om											
			0111											
ć1 000 000	Number of	7.042.440.5555			 	 	 	 			 			
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons_from_the_L										
				ake_Peipsi/Chudskoe_Basin_Management_Program										
	Diana Iskreva,	(359-897) 801-179	diskreva@earthforev											
	Executive Director, Earth Forever		<u>er.org</u>											
	Foundation													
N/A	Manual R. Reyes			http://www.oired.vt.edu/sanremcrsp/professionals/										
				research-activities/phase4/ltras/ltra12/										
N/A	Catherine Chan-			http://www.oired.vt.edu/sanremcrsp/professionals/										
	Halbrendt			research-activities/phase4/ltras/ltra11/										
														·

Image: Control of the decomponent of th	Robit Jindal		
1 1		Papers/426577/Carbon Sequestration Projects	
National National Na			
Addition Addition <td< td=""><td>Robit Jindal</td><td></td><td></td></td<>	Robit Jindal		
1 1			
1 1	Robit Jindal	n n http://michiganstate.academia.edu/RohitIindal/Pan	
Image: Control interference of the control interference			
Image: State of the state	Robit Jindal	http://michiganstate.academia.edu/RohitJindal/Pap	
Image: State Stat			
Image: Instant of the second of the secon			
Image:	Robit lindal	http://michiganstate.academia.edu/RohitJindal/Pap	
Image:			
Met rocki mtp://mtp:/mtp:/mtp://mtp:/mtp://m			
Image: Section of the section of th		n	
Image: Section 1, Section 2, Sectin 2, Sectin 2, Sectin 2, Section 2, Section 2, Section 2, Section 2	Robit Jindal	http://michiganstate.academia.edu/RohitJindal/Pap	
Image: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			
International International and international part of the second andinternation part of the second and part of th			
Image: Instrume and State Sta			
Image:	Robit Jindal	http://michiganstate.academia.edu/RohitJindal/Pap	
Addt. Indd Addt. Jindd		ers/426577/Carbon_Sequestration_Projects_In_Afric	
Image: Sector 1. Index I		a_Potential_Benefits_and_Challenges_to_Scaling_U	
Image: Sector 1. Index I			
Image:	Robit Jindal		
Robit indal n <th< td=""><td></td><td></td><td></td></th<>			
Image:		a_Potential_Benefits_and_Challenges_to_Scaling_U	
Image:	Pohit lindal		
Image:	KODIL JIIIUAI		
Index Index <th< td=""><td></td><td></td><td></td></th<>			
Image: Sequestration of Se		a_rotentual_cenents_anu_chanenges_to_scamg_o	
Image: Sequestration of Se	Robit Jindal	u u u u u u u u u u u u u u u u u u u	
Image: Includie and the second sequest ratio of protecting and pr			
Note: IndalNote: Ind			
Image: Section of the secting of the secting of th			
Image: Solution of the second seco	Robit Jindal	http://michiganstate.academia.edu/RohitJindal/Pap	
n n		ers/426577/Carbon_Sequestration_Projects_In_Afric	
not n		a_Potential_Benefits_and_Challenges_to_Scaling_U	
Image: Selection of the se			
Image: Second	Robit Jindal		
Image: constraint of the properties			
Image: Sequestration_Projects_In_Afric a_Potential_Benefits_and_Challenges_to_Scaling_U n Image: Sequestration_Projects_In_Afric Image: S		a_Potential_Benefits_and_Challenges_to_Scaling_U	
Image: Sequestration_Projects_In_Afric a_Potential_Benefits_and_Challenges_to_Scaling_U n Image: Sequestration_Projects_In_Afric Image: S			
Image: Selection of the selec	KODIT JINDAI		
Image: Note of the second s			
Image: Solution of the state of the sta		a_rouenua_penenus_anu_Chanenges_t0_staing_0	
Image: Solution of the state of the sta	Robit Jindal	http://michiganstate.academia.edu/RohitIindal/Pan	
Image: Solid light ligh			
A constraint of the second			
ers/426577/Carbon_Sequestration_Projects_In_Afric a_Potential_Benefits_and_Challenges_to_Scaling_U on ers/426577/Carbon_Sequestration_Projects_In_Afric ers/426577/Ca			
ers/426577/Carbon_Sequestration_Projects_In_Afric a_Potential_Benefits_and_Challenges_to_Scaling_U on ers/426577/Carbon_Sequestration_Projects_In_Afric ers/426577/Ca	Robit Jindal	http://michiganstate.academia.edu/RohitJindal/Pap	
Image: Section of the section of th			
Image: Note of the system of the sy			
ers/426577/Carbon_Sequestration_Projects_In_Afric			
ers/426577/Carbon_Sequestration_Projects_In_Afric	Robit Jindal	http://michiganstate.academia.edu/RohitUindal/Pap	
a_Potential_Benefits_and_Challenges_to_Scaling_U		ers/426577/Carbon_Sequestration_Projects_In_Afric	
		a_Potential_Benefits_and_Challenges_to_Scaling_U	

Programme Officer Integrated_Water_Resources_Management_in_the for Energy and Prespa_region_through_participatory_processes_a Environment at ud_alague						 							 		 	 		
Image: Solution of the solution		Robit Jindal			http://michiganstate.academia.edu/RohitJindal/Pap													
Index and with load Index and with l					ers/426577/Carbon_Sequestration_Projects_In_Afric			1			1							
Allower					a_Potential_Benefits_and_Challenges_to_Scaling_U													
Allower		Robit Jindal			n http://michiganstate.academia.edu/RohitJindal/Pap													
Image: Control former: Source:																		
Image:					a_Potential_Benefits_and_Challenges_to_Scaling_U													
Image:		Robit lindal			n http://michiganstate.academia.edu/Rehitlindal/Ran													
Image: Sector		NODIC JINUAI																
Image: Sector																		
MMXT_genericity					n													
Image: Solution of the second seco																		
1 1					SMENT_REPORT.pat													
1 1																		
1 1																		
1 1																		
1 1					http://www.nrcs.usda.gov/wps/portal/nrcs/detailful										 	 		
interm																		
intend																		
Image: bolt water Im																		
1 1					&ttype=detailfull&pname=Conservation%20Practice													
1 1				1	http://www.nrcs.usda.gov/wps/portal/nrcs/detailful		1			1								
1 1					I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0													
initial style=betakinkspan=-Conservation%20Partice initial style=betakinkspan=-Conservation%20Partinformatindinformation%20Partice initia					26849&navid=120160340000000&pnavid=12016000													
Image: Stable in the stable interview of the st																		
And A					&ttype=detailfull&pname=Conservation%20Practice													
Image: bit in the state indexersity index					s%20 %20NRCS													
Image: bit in the state indexersity index																		
Image: bit in the state indexersity index																		
Image: bit in the state indexersity index																		
Image: bit in the state indexersity index					Cash. D. et al. 2007. Nitrate Toxicity of Montana													
Image: And problem Image: An																		
Image: And problem Image: An																		
Image: All Delta in the second of the sec					Exner, M.E., H. Perea-Estrada, and R.F. Spalding.													
Programme Officer for Energy and Environment at UNDP COMacedonia Integrated_Water_Resources_Management_in_the _Prespa_regio_through_participatory_processes_a ind_dialogue Image: Note that the state of the state																		
Programme Officer for Energy and Environment at UNDP COMacedonia Integrated_Water_Resources_Management_in_the _Prespa_regio_through_participatory_processes_a ind_dialogue Image: Note that the state of the state																		
Programme Officer for Energy and Environment at UNDP COMacedonia Integrated_Water_Resources_Management_in_the _Prespa_regio_through_participatory_processes_a ind_dialogue Image: Note that the state of the state				1														
Programme Officer for Energy and Environment at UNDP COMacedonia Integrated_Water_Resources_Management_in_the _Prespa_regio_through_participatory_processes_a ind_dialogue Image: Note that the state of the state																		
Programme Officer for Energy and Environment at UNDP COMacedonia Integrated_Water_Resources_Management_in_the _Prespa_regio_through_participatory_processes_a ind_dialogue Image: Note that the state of the state	\$4,130,000	Mr. Akihito Kono,			http://waterwiki.net/index.php/Macedonia	1												
for Energy ad Environment at UNDP CO Macedonia Image: Comparison of through participatory processes and adialogue Image: Comparison of through participatory pa		Programme Officer			_Integrated_Water_Resources_Management_in_the													
UND C OAccedonia Outspection Outspection<		for Energy and			_Prespa_region_through_participatory_processes_a													
N/A N/A <td></td> <td></td> <td></td> <td></td> <td>nd_dialogue</td> <td></td>					nd_dialogue													
		UNDP CO Macedonia																
N/A N	N/A	N/A	N/A	N/A	N/A													
N/A N																		
N/A N																		
N/A N				1														
N/A N/A N/A N/A N/A Image: Note that the state of the																		
		N/A	N/A	N/A	N/A													
				1														
				1														

r		1			 		 	 r	 	-			 	
	Forbes Walker		frwalker@utk.edu	http://www.sera17.ext.vt.edu/Documents/BMP_ spray_fields.pdf										
				<u>spray neids.pdr</u>										
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful										
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
				26849&navid=12016034000000&pnavid=12016000										
				0000000&position=Not%20Yet%20Determined.Html										
				&ttype=detailfull&pname=Conservation%20Practice										
				s%20 %20NRCS										
	1	1	1	http://www.nrcs.usda.gov/wps/portal/nrcs/detailful										
				l/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
				26849&navid=120160340000000&pnavid=12016000										
				0000000&position=Not%20Yet%20Determined.Html										
				&ttype=detailfull&pname=Conservation%20Practice										
				s%20 %20NRCS										
								 	 -					
				Li, S., et al. 2011, Better Crops with Plant Food, Vol.										
				95, No. 3, 20-23.										
				33, NO. 3, 20-23.					 					
				(Dworak et al 2007)					 					
			1											
			1											
N/A	N/A	N/A	N/A	N/A							1	1		
N/A	N/A	N/A	N/A	N/A										
			1											
			1											
N/A	N/A	N/A	N/A	N/A										
			1											
				http://www.epa.gov/owow_keep/NPS/chesbay502/										
				pdf/chesbay_chap02.pdf										
			1											
	1	1	1											

				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful												
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0												
				26849&navid=120160340000000&pnavid=12016000												
				0000000&position=Not%20Yet%20Determined.Html												
				ooooooaposition=Not%20tet%20Determined.Html	1											
1				&ttype=detailfull&pname=Conservation%20Practice												
				\$201%20NRCS	-											
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful	1								1	ļ		
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0												
				26849&navid=12016034000000&pnavid=12016000												
				0000000&position=Not%20Yet%20Determined.Html												
				&ttype=detailfull&pname=Conservation%20Practice												
				s%201%20NRCS												
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful												
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0												
				26849&navid=12016034000000&pnavid=12016000												
				0000000&position=Not%20Yet%20Determined.Html												
				&ttype=detailfull&pname=Conservation%20Practice												
				s%20 %20NRCS												
	+															
					1								1			
1														1		
					1								1			
1																
1																
1																
1																
1														1		
				(Helcom 2007)												
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org	1								1			
					1								1			
					1	1										
1																
1																
N/A	N/A	N/A	N/A	N/A				 	 	 					 	
N/A	N/A	N/A	N/A	N/A			 									
N/A	N/A	N/A	N/A	N/A						 						
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A						 						
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A					 							
N/A	N/A	N/A	N/A	N/A						 						
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A	N/A												
N/A	N/A	N/A	N/A													
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A													
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES						 						
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES					 							
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES						 						
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES					 		 					
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES						 	 					
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES						 						
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												
N/A	N/A	N/A	N/A	http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf http://archive.chesapeakebay.net/pubs/BMP_ASSES												

Pe	eter Wright	peter.wright@ny.usd	http://www.sera17.ext.vt.edu/Documents/BMP_bar												
			nyard_feedlot.pdf												
	Mark Powell	in a surel 2 Outline and u	http://www.ears17.est.t.edu/Deeursets/DNAD_dia			 		-		 				 	
J.	Mark Powell		http://www.sera17.ext.vt.edu/Documents/BMP_die												
			tary_phosphorus.pdf												
							1								
	6.7				+				\vdash	 	 				
G	.S. Toor	gurpal@udel.edu	http://www.sera17.ext.vt.edu/Documents/BMP_												
			grazing management.pdf	1			1								
				1			1								
			http://www.epa.gov/owow_keep/NPS/chesbay502/ pdf/chesbay_chap02.pdf												
			pdi/chesbay_chapoz.pdi												
			http://www.nrcs.usda.gov/wps/portal/nrcs/detailful												
			I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0												
			26849&navid=12016034000000&pnavid=12016000												
			0000000&position=Not%20Yet%20Determined.Html												
			&ttype=detailfull&pname=Conservation%20Practice												
├			s%201%20NRCS												
			http://www.nrcs.usda.gov/wps/portal/nrcs/detailful												
			I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0												
			26849&navid=12016034000000&pnavid=12016000												
			0000000&position=Not%20Yet%20Determined.Html												
			&ttype=detailfull&pname=Conservation%20Practice												
0	e Klein, C. A. M.		http://www.nal.usda.gov/wqic/ceap/CEAP06comple												
	nd Ledgard, S. F.		te.pdf				1								
				1			1								
							1								
				1			1								
Li	ne, D. E.		http://www.nal.usda.gov/wqic/ceap/CEAP06comple	1			1								
			te.pdf												
				1			1								

		r	-			 	 								 	
	Greenwood, K. L.;			http://www.nal.usda.gov/wqic/ceap/CEAP06comple		T T	Т	T	Т	Т	Τ	T				
	MacLeod, D. A.;			te.pdf												
	Scott, J. M.;	1	1													
	Hutchinson, K. J.															
	Agouridis, C. T.;			http://www.nal.usda.gov/wqic/ceap/CEAP06comple												
	Edwards, D. R.;			te.pdf												
	Edwards, D. R.;			te.pdi												
	Workman, S. R.;															
	Bicudo															
	Sheffield, R. E.;			http://www.nal.usda.gov/wqic/ceap/CEAP06comple												
	Mostaghimi, S.;			te.pdf												
	Vaughan, D. H.;			te.pui												
	Collins, E.R.; and															
	Allen, V. G.															
			1													
			1													
	McDowell, R. W.;			http://www.nal.usda.gov/wqic/ceap/CEAP06comple te.pdf		+ +	 							 		
	Drewry, J. J.;			to odf												
	Muirhead, R. W.; and			te.pui												
	Paton, R. J.															
	Osei, E.; Gassman, P.			http://www.nal.usda.gov/wqic/ceap/CEAP06comple												
	W.; Hauck, L. M.;			te.pdf												
	Neitsch, S.; Jones, R.															
	D.; McNitt, J.; and															
	Jones, H.															
			1													
			1													
	Jan Thulin		an@ices.dk	http://www.ices.dk/projects/BSRP.asp												
			1													
			1													
			1													
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.updp.drp.org												
000,000	UKP - Ivan Zavadsky	II/ d	11/a	www.undp-drp.org												
		<u> </u>	+.													
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org												
			1													
		1														

		r							r		 			 	 ,
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org											
600,000	DRP - Ivan Zavadsky	- /-	- /-												
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org											
978,102	Ms. Ivanka Todorova	(250-2) 040-6642	slm@moew.governm												
578,102		(333-2) 340-0043	ent.bg												
	Omer Faruk Mutlu														
			Farukm@kkgm.gov.tr												
\$5,000,000	Valentin Alexandrescu	+40.242.331.614													
	Alexandrescu		valexandrescu@apcp. ro												
			10												
N/A	S. T. Ikerra														
N/A	Arthur J Gold		agold@uri.edu												
N/A	Arthur J Gold		agold@uri.edu												
								I							

Annually: €1.94 per ton	N/A	N/A	N/A	N/A							1	1		
N/A	N/A	N/A	N/A	N/A										
N/A	N/A	N/A	N/A	N/A										
				http://nutrient-bestpractices.iwlearn.org/nutrient-										
				reduction-practices/plonearticle.2011-05- 02.5730451017/files/Best%20Practices.pdf										
				02.5730451017/files/Best%20Practices.pdf										
	Bill Jokela		bill.jokela@uvm.edu	http://www.sera17.ext.vt.edu/Documents/BMP_ma										
				nure_spreader_calibration.pdf										
	1	1	1		1 1		1	1			1	1		

Peter Kleinman		e-mail:pjk9@psu.edu	http://www.sera17.ext.vt.edu/Documents/BMP_ma										
			nure_testing.pdf										
Barry Kintzer		barry.kintzer@usda.g	http://www.sera17.ext.vt.edu/Documents/BMP_phy										
		ov	sical_manure.pdf										
Doug Smith		drsmith@pudue.edu	http://www.sera17.ext.vt.edu/Documents/BMP_swi										
			ne_manure.pdf										
Thomas Dworak			http://nutrient-bestpractices.iwlearn.org/nutrient-										
		ogic.eu	reduction-practices/plonearticle.2010-04-										
			09.4138430625/files/BS%20case%20studies-										
			%20030108.pdf										
	+(43 1) 26060 5738	icpdr@unvienna.org	http://www.icpdr.org/icpdr-files/8936										
			http://www.nrcs.usda.gov/wps/portal/nrcs/detailful l/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
			I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0										
			26849&navid=12016034000000&pnavid=12016000										
			0000000&position=Not%20Yet%20Determined.Html										
			&ttype=detailfull&pname=Conservation%20Practice										
			s%20 %20NRCS										

				Fields, L. 2011. Cornell University nutrient											
				Management Spear Program, Whole Farm Evaluation											
				Series. / Stallings, C.C. 2005. Virginia Cooperative Extension. / Tylutki, T.P. et al. 2004. The Professional											
				Animal Scientist 20:58-65.											
				German Federal Ministry of Environment (2006). Evaluation of policy measures and methods to											
				reduce diffuse water pollution - Forschungsbericht											
				201 24 222/01 - /04 UBA-FB 000727. p.70)											
				(Cuttle et al, 2007)											
		1	1					 				1			
				(Helsinki Commission, 2007)											
									Т						1
\$4,130,000	Mr. Akihito Kono,			http://waterwiki.net/index.php/Macedonia								1	1		
	Programme Officer			Integrated Water Resources Management in the											
	for Energy and			_Prespa_region_through_participatory_processes_a											
	Environment at UNDP CO Macedonia			nd_dialogue											
\$17,000,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org											
00.000		,	. 1.												
100,000	Ivan Zavadsky	n/a	n/a	www.undp-drp.org											
N/A	G. V. M. Gupta	91-44-22460993	gvmgupta@yahoo.co												
			m												

We with With With With With With With With W							 			 			 	 		
br to MARNAN br to MARNAN <td< td=""><td>N/A</td><td>Tropical Soil Biology</td><td></td><td>r.delve@cgiar.org</td><td> </td><td></td><td></td><td></td><td>Т</td><td></td><td></td><td>T</td><td></td><td> 7</td><td>Т</td><td></td></td<>	N/A	Tropical Soil Biology		r.delve@cgiar.org					Т			T		7	Т	
with burgers with burgers <td< td=""><td></td><td>and Fertility Institute</td><td></td><td>and</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		and Fertility Institute		and												
Magnetic figure		for the Soil, Water,														
instructional biology with the second sec				au												
Consistenci or or NA		Management														
Independent																
Aperatorial Appratorial		Consultative Group														
Nazor: Nazor: Nazor: NA NA <th></th> <th>on International</th> <th></th>		on International														
N/A N																
Decision for based NA N		Research.														
Decision for based NA N																
Decision for based NA N																
Decision for based NA N																
Decision formed NA NA </th <th></th>																
Decision formed NA NA </td <td></td>																
Decision for based NA N																
Decision for based NA N																
Decision for based NA N																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x	N/A	N/A	N/A	N/A	N/A											
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x																
of planary 2000 in Seeden is xx1.Ave. is x1.Ave. is xx1.Ave. is x										 						
16 SY 1.979c 16 Sy 1.6106-728 Invoje hovat@mp.h Introje hovat@mp.h	The current nitrogen tax (as	N/A	N/A	N/A	N/A											
Image: Projection protection protectin protectin protection protection protection protecti	of January 2006) in Sweden															
r reduction-practices/plonearticle.2009-12- 06.0475891000/files/24_croatia.pdf b0.0glas Beegle dbb@psu.edu b0.uglas Beegle dbb@psu.edu	is SEK 1.8/kg .															
r reduction-practices/plonearticle.2009-12- 06.0475891000/files/24_croatia.pdf b0.0glas Beegle dbb@psu.edu b0.uglas Beegle dbb@psu.edu																
r reduction-practices/plonearticle.2009-12- 06.0475891000/files/24_croatia.pdf b0.0glas Beegle dbb@psu.edu b0.uglas Beegle dbb@psu.edu																
r reduction-practices/plonearticle.2009-12- 06.0475891000/files/24_croatia.pdf b0.0glas Beegle dbb@psu.edu b0.uglas Beegle dbb@psu.edu		Unvein Un (11	205 /1 /0100 720	have a log of the	Late //		 	-		 	 		 			
Douglas Beegle dbb@psu.edu http://www.sera17.ext.vt.edu/Documents/BMP_pho Image: Constant of the photon of t		nrvoje Horvat	385/1/6106-728	nrvoje.norvat@mps.h	nup://nutrient-bestpractices.iwlearn.org/nutrient-											
Douglas Beegle http://www.sera17.ext.vt.edu/Documents/BMP_pho Image: Contract of the series of				r	reduction-practices/pionearticle.2009-12-											
					06.0475891000/files/24_Croatia.pdf											
				1												
		Douglas Beegle		dhb@nsu edu	http://www.sera17.ext.vt.edu/Documents/PMP_pbo	<u> </u>	 									
		Dougias Deegle		app@psu.euu												
					sphoras_balance.put											
					1						1					

	Forbes Walker		fruglkor@utk.od:	http://www.coro17.ovt.ut.odu/Documents/DMD	 	 				 				 	
	i orbes walker		frwalker@utk.edu	http://www.sera17.ext.vt.edu/Documents/BMP_veg etative_mining.pdf											
			1												
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=120160340000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice											
				s%20 %20NRCS											
				5/6201/625/11/05											
			1												
			1												
\$10 000	Victor Cimpoies		veco@rambler.ru												
1	P														
		a. /a		N/A	 	 	 			 			<u> </u>	 	
	N/A	N/A	N/A	N/A											
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons from the L											
				ake Peipsi/Chudskoe Basin Management Program											
								1							

[Almir Prljaca	(387-33) 565-400	prljaca@voda.ba	http://gefonline.org/projectDetailsSQL.cfm?projL	1							1			<u> </u>		
	, and this ca	(307 337 303 100	prijučaje vodalod	<u>D=2143</u>													
N/A	Brent M. Swallow		b.swallow@cgiar.org														
N/A	(Kenya) and Dennis		and														
	P. Garrity (Indonesia)	d.garrity@cgiar.org														
N/A	N/A	N/A	N/A	N/A													
N/A	N/A	N/A	N/A	N/A													
	Harbans Lal			http://asae.frymulti.com/abstract.asp?aid=24573&t=													
				2													
												-					
	<u> </u>	ļ		(Dworak et al 2007)													
					ļ						1	ļ	1	1			
	+	+	+						 		1		1	1		 	
	1																
	Diana Iskreva, Executive Director,	(359-897) 801-179	diskreva@earthforev er.org														
	Executive Director, Earth Forever		er.org														
	Foundation																
					I	1	1	1				1			1		

\$10,800,000	Franziska Meinzinger		f.meinzinger@tuhh.d	http://www.apcp.ro/										
			e											
	Dennis Carman		Dennis.Carman@ar.u sda.gov	http://www.sera17.ext.vt.edu/Documents/BMP_tail water.pdf										
	Robin Broadfield	202-473-4355	Rbroadfield@worldb ank.org	http://iwlearn.net/iw-projects/3223/project_doc/10- 26- 06%20Revised%20Shanghai%20GEF%20request%20f or%20Pipeline%20and%20PDFB.pdf/at_download/fil e										
N/A	N/A	N/A	N/A	N/A										
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful l/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0 26849&navid=120160340000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailful&pname=Conservation%20Practice e%2014/20MPCS										
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful I/?ss-16&navtype=SUBNAVIGATION&cid=nrcs143_0 26&49&navid=12016034000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%201%20NRCS										
				(http://www.hgca.com/publications/documents/cro presearch/Soils.pdf) (http://www.gardenorganic.org.uk/organicweeds/do wnloads/mincult.pdf)										

	Jan Thulin	1	an@ices.dk	http://www.ices.dk/projects/BSRP.asp		 										
	54.1 Hum		anelicsiun													
	Jan Thulin		an@ices.dk	http://www.ices.dk/projects/BSRP.asp												
	-															
5,000,000	Ryszard Rogowski	48.22.8490079.521	rjr@nfosigw.gov.pl	http://www.iwlearn.net/iw- projects/Fsp_112799468329/project_doc/poland-												
				project-brief-34p-248k.pdf/view												
978,102	Ms. Ivanka Todorova	(359-2) 940-6643	slm@moew.governm													
570,102		(555 2) 5 10 00 15	ent.bg													
978,102	Ms. Ivanka Todorova	(359-2) 940-6643	slm@moew.governm ent.bg													
			Ū													
100,000	Ivan Zavadsky	n/a	n/a	www.undp-drp.org												
100,000	Ivall Zavausky	i ya	11/4	www.unup-urp.org												
100,000	Ivan Zavadsky	n/a	n/a	www.undp-drp.org	1											
100,001	Ivan Zavadsky	n/a	n/a	www.undp-drp.org												
											1	1		1		
100,002	Ivan Zavadsky	n/a	n/a	www.undp-drp.org												, T
					ļ					 						
100,003	Ivan Zavadsky	n/a	n/a	www.undp-drp.org												
1	1							1	1							

100,004	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
100,005	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
100,006	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
100,007	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
100,008	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
,	,	.,		and the second										
100,009	Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
\$10,160,000	Bueno Dickens Sande	e (256)77-419-734	bdsande@yahoo.co.u											
			<u>k</u>											
\$10,160,000	Bueno Dickens Sande	256)77-419-734	bdsande@yahoo.co.u											
			<u>n</u>											
N/A		254 2 524755	i ogola@egiar.cc=		l		 				 			
IN/ M		2,94 2 324/33	j.ogola@cgiar.com											
	Thomas Dworak			http://nutrient-bestpractices.iwlearn.org/nutrient-										
			ogic.eu	reduction-practices/plonearticle.2010-04- 09.4138430625/files/BS%20case%20studies-										
				%20030108.pdf										

				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0 26849&navid=120160340000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%20]%20NRCS							
				[PDF]							
				Pampolino, M. et al. 2011. IPNI, Penang, Malaysia. / Witt, C. et al. 2009. IPNI, Penang, Malaysia.							
				http://www.reefwisefarming.qld.gov.au/pdf/smart- sugar-practices.pdf							
\$ 538,197.00	Diana Iskreva, Executive Director, Earth Forever Foundation	(359-897) 801-179	diskreva@earthforev er.org	http://www.wecf.eu/english/articles/2008/07/matra- bulgariafinal.php							
\$ 31,970,000.00	Janos Tobias	(36-1) 457-3300	<u>tobiasj@budapest.hu</u>								
\$1,000,000	Natalia Alexeeva	7.812.449.0555	natalia@ctcspb.ru	http://waterwiki.net/index.php/Lessons_from_the_L ake_Peipsi/Chudskoe_Basin_Management_Program							
20,270,000	Almir Prijaca	(387-33) 565-400	prijaca@voda.ba								

	Adisa Tojaga Kajan	(297.26) 207 991	atojaga@jadran.ba			1			 		, i	ı
	Auisa Tojaga Kajan	(201-20) 221-221	atojaga@jauran.ba									
	Adisa Tojaga Kajan	(387-36) 397-881; (387-	atojaga@jadran.ba	http://gefonline.org/projectDetailsSQL.cfm?projID=2 143								
		36) 397-882		143								
N/A	B. K. Nayak		bk_nakak@yahoo.co									
N/A	D. K. Nayak		m									
N/A	Satyanarayan		snbramha@yahoo.co	http://www.indjst.org				T				
	Bramha		<u>m</u>									
N1 / A												
N/A	G. C. Swain											
N/A	A. Saravanakumar		arunachalashivamdr									
			@yahoo.com									
N/A	Arthur J Gold		agold@uri.edu									
N/A	Arthur J Gold		agold@uri.edu									

N/A	N/A	N/A	N/A	N/A	1	1	1 1								
N/A	N/A	N/A	N/A	N/A											
N/A	N/A	N/A	N/A	N/A											
N/A	N/A	N/A	N/A	N/A											
				http://archive.chesapeakebay.net/pubs/BMP_ASSES										T	
				SMENT_REPORT.pdf											
				http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf											
				SWENT_REPORT.put											
	+	-	-	http://archive.chesapeakebay.net/pubs/BMP_ASSES									 		
				SMENT_REPORT.pdf											
				http://archive.chesapeakebay.net/pubs/BMP_ASSES							 				
				SMENT_REPORT.pdf											
	1			http://www.fppcinc.org/projects_agriculturalwastes											
				olutions.html											
	1														
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful											
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0											
				26849&navid=12016034000000&pnavid=12016000											
				0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice											
				s%201%20NRCS											

				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful l/?ss=16&navtype=5UBNAVIGATION&cid=nrcs143_0 26849&navid=12016034000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%201%20NRCS									
				<pre>I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0 26849&navid=12016034000000&pnavid=12016000 0000000&position=Not%20Yet%20Determined.Html &ttype=detailfull&pname=Conservation%20Practice s%20 %20NRCS</pre>									
\$1,000,000	Peter Whalley		pdwhalley@btinter t.com	rne www.icpdr.org/undp-gef-tisza									
	EDIS			http://edis.ifas.ufl.edu									
N/A	Prabir Kumar Naik		pkr_pitha9@rediffr il.com	ma									
N/A	C. R. Das		incom										
N/A	Prabir Kumar Naik												
N/A	N/A	N/A	N/A	N/A									
N/A	N/A	N/A	N/A	N/A									
				http://archive.chesapeakebay.net/pubs/BMP_ASSES SMENT_REPORT.pdf									

				http://archive.chesapeakebay.net/pubs/BMP_ASSES			1										
				SMENT_REPORT.pdf			1										
							1										
				http://archive.chesapeakebay.net/pubs/BMP_ASSES													
				SMENT_REPORT.pdf													
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful													
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0													
				26849&navid=12016034000000&pnavid=12016000													
				0000000&position=Not%20Yet%20Determined.Html													
				&ttype=detailfull&pname=Conservation%20Practice													
	1		1	http://www.nrcs.usda.gov/wps/portal/nrcs/detailful													
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0			1										
				26849&navid=12016034000000&pnavid=12016000			1										
				0000000&position=Not%20Yet%20Determined.Html					1								
				&ttype=detailfull&pname=Conservation%20Practice													
				s%20 %20NRCS													
				http://www.nrcs.usda.gov/wps/portal/nrcs/detailful								Т				Т	
				I/?ss=16&navtype=SUBNAVIGATION&cid=nrcs143_0			1										
				26849&navid=12016034000000&pnavid=12016000													
				0000000&position=Not%20Yet%20Determined.Html													
				&ttype=detailfull&pname=Conservation%20Practice s%20 %20NRCS													
				5%2U %2UINCS	 												
				(Evans et al. 1996. Economics of Controlled													
				Drainange and Subirrigation systems.);													
				http://www.soil.ncsu.edu/publications/BMPs/draina													
				ge.html													
				×													
							1										
				(Hoffmann, et al. 1998.)			1										
							1										
							1										
				(The Macaulay Institute:													
				http://www.macaulay.ac.uk/aweg/hydroirrigate.pdf)													
\$ 3,894,947.00	Jan Thulin	0045 3338 6700	jan@ices.dk	http://www.ices.dk/projects/balticsea.asp			1							1			
							1										
							1										
							1										
							1										
					 				ļ					ļ			
	Diana Iskreva,	(359-897) 801-179	diskreva@earthforev				1										
	Executive Director, Earth Forever		er.org				1										
	Foundation						1										
	Janos Tobias	(36-1) 457-3300	tobiasj@budapest.hu	http://www.iwlearn.net/iw-			1							1			
				projects/Fsp_112799468924			1										
							1										
							1										
	1	1	1			1	1		1	1				1			

\$4,675	Sandor Tatar		tatars@mail.inext.hu											
			-											
\$1,000,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org										
	Adisa Tojaga Kajan	(387-36) 397-881; (387	ataiaaa Qiadaaa ka	http://gefonline.org/projectDetailsSQL.cfm?projID=2					 		 			
	Auisa Tojaga Kajali	36) 397-882	- atojaga@jauran.ba	143										
N/A	Floating Island International	1-(406)373-5200		www.floatingislandinternational.com										
N/A	Living Machine Systems	1-(434)973-6365		www.livingmachines.com										
N/A	Living Machine	1-(434)973-6365		www.livingmachines.com										
	Systems													
N/A	Living Machine Systems	1-(434)973-6365		www.livingmachines.com										
N/A	Living Machine	1-(434)973-6365		www.livingmachines.com										
N/A	Systems Living Machine Systems	1-(434)973-6365		www.livingmachines.com										
N/A	Living Machine Systems	1-(434)973-6365		www.livingmachines.com										
N/A	Living Machine	1-(434)973-6365		www.livingmachines.com										
N/A	Systems Living Machine	1-(434)973-6365		www.livingmachines.com										_
N/A	Systems Arthur J Gold		agold@uri.edu											
			agoing annead											
Constructing wetlands costs	N/A	N/A	N/A	N/A	 1									
vary between SEK 2200 - 7600.														

		•											-		
															What were
															the pilot demonstra
															tions?
				http://archive.chesapeakebay.net/pubs/BMP_ASSES											
				SMENT_REPORT.pdf											
				http://archive.chesapeakebay.net/pubs/BMP_ASSES											
				SMENT_REPORT.pdf											
												1			
												1			
1												1			
			1									1			
1												1			
												1			
				Arheimer et al (2004)											
\$10,740,000	Alexandru	+373.22.223.106	alexjol@capmu.md	http://www.capmu.md/?a=1&id=60											
	Jolondcovschi														
\$10,800,000	Franziska Meinzinger		f.meinzinger@tuhh.d	http://www.apcp.ro/											
			e												
		,	,									-			
600,000	DRP - Ivan Zavadsky	n/a	n/a	www.undp-drp.org											
N/A	Jay Norton	307-766-5082	inorton4@uwyo.edu	http://uwyosanrem.wordpress.com/	 ł				ł			+			
	say norton	507 700 5002	J. orton- @uwyo.edu	incpi, a wyosument worup essionly								1			
												1			
												1			
												1			
N/A	Catherine Chan-			http://www.oired.vt.edu/sanremcrsp/professionals/											
	Halbrendt			research-activities/phase4/ltras/ltra11/ http://archive.chesapeakebay.net/pubs/BMP_ASSES	 							+			
				SMENT_REPORT.pdf								1			
				Silen _iei Sinpu								1			
												1			
												1			
												1			
					 							+			
					<u> </u>				<u> </u>			1			
												1			
					 				L			<u> </u>	L		L
	+		+		 ł				ł			+			
<u> </u>	1	1	1									1			
								•							

				1								 				
		http://www.ipni.net/ipniweb/portal.nsf/e0f085ed5f	00161685257000005	70020/6f08d	46d7o449b	068525765	800636af5		e%20Study	%207 2-2 p	df					
		http://www.ipni.net/ipniweb/portal.nsf/e0f085ed5	00101000201000000	0020/01000	400104400	000020700	000000000	(¢I IEE/OUS	c /0200100y	70201.2 2.0	u					
		f091b1b852579000057902e/6f08d46d7e449b9 b85257b5800636af5/\$FILE/Case%20Study%20														
		7.2-3.pdf														
		http://www.ipni.net/ipniweb/portal.nsf/e0f085ed5f														
		091b1b852579000057902e/6f08d46d7e449b9b8525														
		7b5800636af5/\$FILE/Case%20Study%207.4-2.pdf														
		journal homepage: www. e lsevi e r.com/locate/jgl r		1												
		journal homepage; www. e lsevi e		1								 	 		 	
		<u>journal homepage: www. e Isevi e</u> r.com/locate/jgl r														
				1												

		journal homepage: www. e Isevi e									
		r.com/locate/jgl r									
		iournal homepage: www. e lsevi e									
		journal homepage: www. e lsevi e r.com/locate/jgl r									
			1						1		
1			1								
		journal homepage: www. e lsevi e							1		
		r.com/locate/jgl r									
1			1								
1			1								
			1								
		journal homepage: www. e lsevi e									
		r.com/locate/jgl r									
			1								
		journal homepage: www. e lsevi e r.com/locate/jgl r									
		r.com/locate/jgl r	1								
			1								
			1								
		http://www.ipni.net/ipniweb/portal.nst/e0f085ed5 f091b1b852579000057902e/c13754b8fae4294 385257b5800634efc/\$FILE/Module%203.2-		T	T		Т			I T	
		f091b1b852579000057902e/c13754b8fae4294									
		385257b5800634efc/\$FILE/Module%203.2-									
		<u>2.pdf</u>									

	http://www.ipni.net/ipniweb/portal.nsf/e01085ed5 1091b1b852579000057902e/c13754b8fae4294 385257b5800634efc/\$FILE/Module%203.2- 3.pdf								
	http://www.ipni.net/ipniweb/portal.nst/e0f085ed5 f091b1b852579000057902e/a750ef5fd0bf41a1 85257b580063633e/\$FILE/Module%205.1- 5.pdf								
	http://www.ipni.net/ipniweb/portal.nsf/e0f085ed5 f091b1b852579000057902e/db11e8cb33c5a95 285257b58006365f8/\$FILE/Module%206.3- 1.pdf								
	http://www.sainonline.org/SAIN- Website(English)/download/SAIN_update_Marc h_2013_EN.pdf								